PET-RM MULTITRAZADOR EN LA ESTADIFICACIÓN Y DETECCION DE RECIDIVA EN CANCER DE PROSTATA

Autores/as

  • Antonio Maldonado Suarez
  • Manuel Recio Rodriguez
  • Javier Carrascoso Arranz
  • Felipe Couñago Lorenzo
  • Silvia Fuertes Cabero
  • Vicente Martinez De Vega

Palabras clave:

cancer próstata, PET-RM, poster, seram, estadificación

Resumen

Describir la utilidad de la PET-RM tanto en la estadificación del cáncer de próstata de elevado riesgo como en la detección de recidiva bioquímica y en la planificación de radioterapia. Exponer el rendimiento de los radiofármacos PET más utilizados en la práctica diaria, especialmente la Fluorocolina

INTRODUCCIÓN

En Estados Unidos, el carcinoma de próstata (CP) es el tumor más frecuente y la segunda causa de muerte por cáncer tras el carcinoma de pulmón en varones [1].
En la actualidad, el CP se estudia y clasifica acorde a la estadificación TNM, el score Gleason y el nivel sérico del antígeno prostático específico (PSA). Tanto la detección de los niveles séricos de PSA como los programas de cribado del CP han contribuido a una disminución de la mortalidad. Sin embargo, ante unos valores elevados de PSA existe un riesgo potencial de sobrediagnóstico y, consecuentemente, de sobretratamiento. De hecho, se ha estimado que hasta un 50% los pacientes con enfermedad silente que no presentarán síntomas durante su vida [2]. La incidencia de CP cuando los niveles de PSA son inferiores a 4 ng/ml es del 15.2% [3].
El diagnóstico del CP se realiza por biopsia prostática por sextantes guiada por ecografía transrectal. El CP es el único tumor que se diagnostica por biopsia a ciegas, y dada la heterogeneidad y multifocalidad del tumor, se tiende a subestimar el grado histológico. Además, más del 28% de los cánceres clínicamente significativos no son diagnosticados en la biopsia por sextantes [4].
La estadificación de la enfermedad se basa en la combinación de diferentes técnicas de diagnóstico por la imagen, entre las que se encuentran la Tomografía Computarizada (TC), la Resonancia Magnética (RM) y la gammagrafía ósea [5;6].
Sin embargo, la sensibilidad de las técnicas de imagen anatómicas (TC y RM) para la detección de adenopatías infiltradas no es muy elevada, ya que dependen básicamente de que exista un aumento de tamaño de los ganglios linfáticos. La estrategia terapéutica (con finalidad paliativa o radical) dependerá de la agresividad tumoral local (escala de Gleason) y de la extensión (TNM y PSA).
Cuando se sospecha recurrencia tras el tratamiento radical del CP, bien sea por la sintomatología clínica o por la elevación del PSA, se realizan diferentes técnicas de imagen convencionales [7;8].

Sin embargo, la ecografía transrrectal tiene dificultades en la detección de recurrencias en un 30% de los casos [9], la TC presenta problemas sobre todo en el diagnóstico de recurrencia local y metástasis ganglionares y la RM en la detección de metástasis a distancia. En muchos pacientes, y a pesar de practicarse todos los procedimientos diagnósticos habituales disponibles, la enfermedad no puede localizarse y por tanto no puede definirse su extensión real.
La PET con 18F-FDG ha sido utilizada en el estudio de diferentes tumores con muy buenos resultados. Sin embargo, en el CP presenta limitaciones [10;11] (Figura 1), por lo que se han aplicado otros radiofármacos, entre los que se encuentran el carbono de colina (11C-Colina) y el Cloruro de fluorocolina (18F-Fluorocolina o 18F-FCH) [12-16] (Figura 2)
La 18 F-Fluorocolina (18F-fluoroetilcolina o FEC y 18F-fluorometil-dimetil-2-hidroxietilamonio o FCH) fue introducida por Coleman et al. [17] como un radiotrazador prometedor en la evaluación del CP, y ha demostrado una mayor captación que la 18 flúordeoxiglucosa marcada con 18 Flúor (18F-FDG), tanto en el tumor primitivo como en el metastásico [18].

Descargas

Los datos de descargas todavía no están disponibles.

Citas

American Cancer Society. Cancer Facts &. Figures 2010. Atlanta: American Cancer Society , 2010;1-63.

Schroder FH, Hugosson J, Roobol MJ, et al. Screening and prostate-cancer mortality in a randomized European study. N Engl J Med 2009; 360:1320-1328

Thompson IM, Pauler DK, Goodman PJ, et al. Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter. N Engl J Med 2004; 350:2239-2246

Bak JB, Landas SK, Haas GP. Characterization of prostate cancer missed by sextant biopsy. Clin Prostate Cancer 2003; 2:115-118

Hoh CK, Schiepers C, Seltzer MA, et al. PET in oncology: will it replace the other modalities? Semin Nucl Med 1997; 27:94-106

Rosenthal DI. Radiologic diagnosis of bone metastases. Cancer 1997; 80:1595-1607

Futterer JJ, Engelbrecht MR, Jager GJ, et al. Prostate cancer: comparison of local staging accuracy of pelvic phased-array coil alone versus integrated endorectal-pelvic phased-array coils. Local staging accuracy of prostate cancer using endorectal coil MR imaging. Eur Radiol 2007; 17:1055-1065

Mueller-Lisse UG, Scherr MK. Proton MR spectroscopy of the prostate. Eur J Radiol 2007; 63:351-360

Wefer AE, Hricak H, Vigneron DB, et al. Sextant localization of prostate cancer: comparison of sextant biopsy, magnetic resonance imaging and magnetic resonance spectroscopic imaging with step section histology. J Urol 2000; 164:400-404

Hofer C, Laubenbacher C, Block T, Breul J, Hartung R, Schwaiger M. Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy. Eur Urol 1999; 36:31-35

Sanz G, Robles JE, Gimenez M, et al. Positron emission tomography with 18fluorine-labelled deoxyglucose: utility in localized and advanced prostate cancer. BJU Int 1999; 84:1028-1031

DeGrado TR, Baldwin SW, Wang S, et al. Synthesis and evaluation of (18)F-labeled choline analogs as oncologic PET tracers. J Nucl Med 2001; 42:1805-1814

Fanti S, Nanni C, Ambrosini V, Gross MD, Rubello D, Farsad M. PET in genitourinary tract cancers. Q J Nucl Med Mol Imaging 2007; 51:260-271

Hara T. 18F-fluorocholine: a new oncologic PET tracer. J Nucl Med 2001; 42:1815-1817

Reske SN, Blumstein NM, Neumaier B, et al. Imaging prostate cancer with 11C-choline PET/CT. J Nucl Med 2006; 47:1249-1254

Sanz G, Rioja J, Zudaire JJ, Berian JM, Richter JA. PET and prostate cancer. World J Urol 2004; 22:351-352

Coleman R, DeGrado T, Wang S, et al. 9:30-9:45. Preliminary Evaluation of F-18 Fluorocholine (FCH) as a PET Tumor Imaging Agent. Clin Positron Imaging 2000; 3:147

Price DT, Coleman RE, Liao RP, Robertson CN, Polascik TJ, DeGrado TR. Comparison of [18 F]fluorocholine and [18 F]fluorodeoxyglucose for positron emission tomography of androgen dependent and androgen independent prostate cancer. J Urol 2002; 168:273-280

Lawrentschuk N, Davis ID, Bolton DM, Scott AM. Positron emission tomography and molecular imaging of the prostate: an update. BJU Int 2006; 97:923-931

Picchio M, Crivellaro C, Giovacchini G, Gianolli L, Messa C. PET-CT for treatment planning in prostate cancer. Q J Nucl Med Mol Imaging 2009; 53:245-268

Schillaci O, Calabria F, Tavolozza M, et al. 18F-choline PET/CT physiological distribution and pitfalls in image interpretation: experience in 80 patients with prostate cancer. Nucl Med Commun 2010; 31:39-45

Nanni C, Fantini L, Nicolini S, Fanti S. Non FDG PET. Clin Radiol 2010; 65:536-548

Hacker A, Jeschke S, Leeb K, et al. Detection of pelvic lymph node metastases in patients with clinically localized prostate cancer: comparison of [18F]fluorocholine positron emission tomography-computerized tomography and laparoscopic radioisotope guided sentinel lymph node dissection. J Urol 2006; 176:2014-2018

Heinisch M, Dirisamer A, Loidl W, et al. Positron emission tomography/computed tomography with F-18-fluorocholine for restaging of prostate cancer patients: meaningful at PSA < 5 ng/ml? Mol Imaging Biol 2006; 8:43-48

Massaro A, Ferretti A, Secchiero C, et al. Optimising (18)F-Choline PET/CT Acquisition Protocol in Prostate Cancer Patients. N Am J Med Sci 2012; 4:416-420

Kwee SA, Coel MN, Lim J, Ko JP. Prostate cancer localization with 18fluorine fluorocholine positron emission tomography. J Urol 2005; 173:252-255

Kwee SA, Wei H, Sesterhenn I, Yun D, Coel MN. Localization of primary prostate cancer with dual-phase 18F-fluorocholine PET. J Nucl Med 2006; 47:262-269

Kwee SA, Thibault GP, Stack RS, Coel MN, Furusato B, Sesterhenn IA. Use of step-section histopathology to evaluate 18F-fluorocholine PET sextant localization of prostate cancer. Mol Imaging 2008; 7:12-20

Mertens K, Slaets D, Lambert B, Acou M, De VF, Goethals I. PET with (18)F-labelled choline-based tracers for tumour imaging: a review of the literature. Eur J Nucl Med Mol Imaging 2010; 37:2188-2193

Beheshti M, Imamovic L, Broinger G, et al. 18F choline PET/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: a prospective study of 130 patients. Radiology 2010; 254:925-933

Umbehr MH, Muntener M, Hany T, Sulser T, Bachmann LM. The role of 11C-choline and 18F-fluorocholine positron emission tomography (PET) and PET/CT in prostate cancer: a systematic review and meta-analysis. Eur Urol 2013; 64:106-117

Poulsen MH, Bouchelouche K, Gerke O, et al. [18F]-fluorocholine positron-emission/computed tomography for lymph node staging of patients with prostate cancer: preliminary results of a prospective study. BJU Int 2010; 106:639-643

Fogelman I, Cook G, Israel O, Van der Wall H. Positron emission tomography and bone metastases. Semin Nucl Med 2005; 35:135-142

Picchio M, Messa C, Landoni C, et al. Value of [11C]choline-positron emission tomography for re-staging prostate cancer: a comparison with [18F]fluorodeoxyglucose-positron emission tomography. J Urol 2003; 169:1337-1340

Fuccio C, Castellucci P, Schiavina R, et al. Role of 11C-choline PET/CT in the restaging of prostate cancer patients showing a single lesion on bone scintigraphy. Ann Nucl Med 2010; 24:485-492

Beheshti M, Vali R, Waldenberger P, et al. The use of F-18 choline PET in the assessment of bone metastases in prostate cancer: correlation with morphological changes on CT. Mol Imaging Biol 2009; 11:446-454

Beheshti M, Vali R, Waldenberger P, et al. Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging 2008; 35:1766-1774

Langsteger W, Balogova S, Huchet V, et al. Fluorocholine (18F) and sodium fluoride (18F) PET/CT in the detection of prostate cancer: prospective comparison of diagnostic performance determined by masked reading. Q J Nucl Med Mol Imaging 2011; 55:448-457

Bott SR. Management of recurrent disease after radical prostatectomy. Prostate Cancer Prostatic Dis 2004; 7:211-216

Freedland SJ, Sutter ME, Dorey F, Aronson WJ. Defining the ideal cutpoint for determining PSA recurrence after radical prostatectomy. Prostate-specific antigen. Urology 2003; 61:365-369

Roach M, III, Hanks G, Thames H, Jr., et al. Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int J Radiat Oncol Biol Phys 2006; 65:965-974

Pelosi E, Arena V, Skanjeti A, et al. Role of whole-body 18F-choline PET/CT in disease detection in patients with biochemical relapse after radical treatment for prostate cancer. Radiol Med 2008; 113:895-904

Husarik DB, Miralbell R, Dubs M, et al. Evaluation of [(18)F]-choline PET/CT for staging and restaging of prostate cancer. Eur J Nucl Med Mol Imaging 2008; 35:253-263

Picchio M, Briganti A, Fanti S, et al. The role of choline positron emission tomography/computed tomography in the management of patients with prostate-specific antigen progression after radical treatment of prostate cancer. Eur Urol 2011; 59:51-60

Casamassima F, Masi L, Menichelli C, et al. Efficacy of eradicative radiotherapy for limited nodal metastases detected with choline PET scan in prostate cancer patients. Tumori 2011; 97:49-55

Graute V, Jansen N, Ubleis C, et al. Relationship between PSA kinetics and [18F]fluorocholine PET/CT detection rates of recurrence in patients with prostate cancer after total prostatectomy. Eur J Nucl Med Mol Imaging 2012; 39:271-282

Schillaci O, Calabria F, Tavolozza M, et al. Influence of PSA, PSA velocity and PSA doubling time on contrast-enhanced 18F-choline PET/CT detection rate in patients with rising PSA after radical prostatectomy. Eur J Nucl Med Mol Imaging 2012; 39:589-596

Evangelista L, Zattoni F, Guttilla A, et al. Choline PET or PET/CT and biochemical relapse of prostate cancer: a systematic review and meta-analysis. Clin Nucl Med 2013; 38:305-314

Panebianco V, Sciarra A, Lisi D, et al. Prostate cancer: 1HMRS-DCEMR at 3T versus [(18)F]choline PET/CT in the detection of local prostate cancer recurrence in men with biochemical progression after radical retropubic prostatectomy (RRP). Eur J Radiol 2012; 81:700-708

Liauw SL, Webster WS, Pistenmaa DA, Roehrborn CG. Salvage radiotherapy for biochemical failure of radical prostatectomy: a single-institution experience. Urology 2003; 61:1204-1210

Jhaveri FM, Klein EA. How to explore the patient with a rising PSA after radical prostatectomy: defining local versus systemic failure. Semin Urol Oncol 1999; 17:130-134

Hovels AM, Heesakkers RA, Adang EM, et al. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin Radiol 2008; 63:387-395

Beheshti M, Haim S, Zakavi R, et al. Impact of 18F-choline PET/CT in prostate cancer patients with biochemical recurrence: influence of androgen deprivation therapy and correlation with PSA kinetics. J Nucl Med 2013; 54:833-840

Jilg CA, Schultze-Seemann W, Drendel V, et al. Detection of lymph node metastases in patients with nodal prostate cancer relapse using F/C-choline-PET/CT - influence of size of nodal tumor infiltration and accuracy related to lymph node regions. J Urol 2014;

McCarthy M, Siew T, Campbell A, et al. (1)(8)F-Fluoromethylcholine (FCH) PET imaging in patients with castration-resistant prostate cancer: prospective comparison with standard imaging. Eur J Nucl Med Mol Imaging 2011; 38:14-22

Kwee SA, Coel MN, Ly BH, Lim J. (18)F-Choline PET/CT imaging of RECIST measurable lesions in hormone refractory prostate cancer. Ann Nucl Med 2009; 23:541-548

Karavitakis M, Ahmed HU, Abel PD, Hazell S, Winkler MH. Tumor focality in prostate cancer: implications for focal therapy. Nat Rev Clin Oncol 2011; 8:48-55

Pinkawa M, Attieh C, Piroth MD, et al. Dose-escalation using intensity-modulated radiotherapy for prostate cancer--evaluation of the dose distribution with and without 18F-choline PET-CT detected simultaneous integrated boost. Radiother Oncol 2009; 93:213-219

Wang H, Vees H, Miralbell R, et al. 18F-fluorocholine PET-guided target volume delineation techniques for partial prostate re-irradiation in local recurrent prostate cancer. Radiother Oncol 2009; 93:220-225

Park H, Wood D, Hussain H, et al. Introducing parametric fusion PET/MRI of primary prostate cancer. J Nucl Med 2012; 53:546-551

Piert M, Park H, Khan A, et al. Detection of aggressive primary prostate cancer with 11C-choline PET/CT using multimodality fusion techniques. J Nucl Med 2009; 50:1585-1593

Bauman G, Belhocine T, Kovacs M, Ward A, Beheshti M, Rachinsky I. 18F-fluorocholine for prostate cancer imaging: a systematic review of the literature. Prostate Cancer Prostatic Dis 2012; 15:45-55

Descargas

Publicado

2018-11-22

Cómo citar

Maldonado Suarez, A., Recio Rodriguez, M., Carrascoso Arranz, J., Couñago Lorenzo F., Fuertes Cabero, S., & Martinez De Vega, V. (2018). PET-RM MULTITRAZADOR EN LA ESTADIFICACIÓN Y DETECCION DE RECIDIVA EN CANCER DE PROSTATA. Seram. Recuperado a partir de https://piper.espacio-seram.com/index.php/seram/article/view/106

Número

Sección

Abdominal

Artículos similares

<< < 6 7 8 9 10 11 12 13 14 15 > >> 

También puede {advancedSearchLink} para este artículo.