Barcelona 22/25MAY0/2024

SWE en tumores

lipomatosos benignos

vs malignos

Ilyan Mezinskiy Kushnerev, Javier Hernandez, Juan Carlos Sardiñas, Karen Perez, German Ratto, Paula Escobosa, Mariana

Teixeira, José Antonio Narváez

¹Hospital Universitario de Bellvitge, Barcelona

Barcelona 22/25 MAY0/2024

OBJETIVOS

Barcelona 22/25 MAYO 2024

- Más del 90% de las masas de tejido blando son benignas.
- Los lipomas son el tipo histológico más común.
- La diferenciación de masas benignas vs. malignas es un desafío.
- Características de malignidad: tamaño (>5 cm), profundidad, heterogeneidad, extensión a estructuras vecinas, falta de características benignas claras.
- Biopsia percutánea para diagnóstico definitivo, pero con aumento de morbilidad.
- Dificultad de diferenciar por imagen lipomas con elementos no grasos de los atípicos.

Barcelona 22/25 MAYO 2024

- Desarrollo de nuevas técnicas de
 - imagen para reducir biopsias percutáneas.
- Elastografía por ultrasonido (US) identifica propiedades biomecánicas del tejido.
- Dos técnicas: elastografía de deformación (SE) y elastografía de ondas de corte (SWE).
- En SE, compresión manual; en SWE, impulsos acústicos.

• SWE menos dependiente del operador.

Barcelona 22/25 MAYO 2024

Ondas de corte viajan más rápido en tejidos más rígidos.

 SWE investigada para caracterización de masas en varios sistemas de órganos.

Resultados no concluyentes en tumores musculoesqueléticos.

Barcelona 22/25 MAYO 2024

Objetivo: evaluar si SWE puede diferenciar lesiones lipomatosas malignas de benignas. Hipótesis: tumores lipomatosos malignos más duros que

benignos.

•Mejora comodidad del paciente, aumenta velocidad de

diagnóstico y reduce biopsias

innecesarias.

Barcelona 22/25 MAYO 2024

MATERIAL Y MÉTODOS

Barcelona 22/25 MAYO 2024

 Pacientes revisados retrospectivamente con lesiones adiposas.

 Biopsia con aguja central percutánea guiada por ultrasonido en hospital universitario durante 2022.

Todos los pacientes sometidos a

ultrasonografía seguida de SWE para medir elasticidad en kPa antes de biopsia.

Comparación de tumores benignos y malignos.

Barcelona 22/25 MAYO 2024

 Referencia: hallazgos de biopsia, seguimiento clínico, y en algunos casos,

histología de muestra quirúrgica.

- Exclusión: pacientes < 18 años sin SWE
 - y biopsia.

Ultrasonido y SWE realizados por

radiólogos musculoesqueléticos (más de 5 años de experiencia).

• Equipo: Canon Aplio i700, transductor lineal de 14 MHz.

Barcelona 22/25 MAYO 2024

- Procedimiento de ultrasonido:
 - Identificación de profundidad (superficial o profundo a la fascia), márgenes (bien definidos o infiltrantes), tipo de vascularización (ninguna, periférica o central) y grado de Doppler en color (0-3).
- Procedimiento de SWE:
 - Sonda de ultrasonido paralela a la piel con ligera presión.
 - Región de interés rectangular en la porción más sólida de

la lesión (figura 1) después de estabilización de la señal.

• Evitar áreas de calcificación o licuefacción.

Fig 1: Mapas SWE con medidas de elasticidad de un lipoma y un liposarcoma bien diferenciado.

Barcelona 22/25 MAYO 2024

- Medición de elasticidad (media y máxima en kPa) y su desviación estándar (figura 2).
- Biopsia percutánea bajo guía de ultrasonido después de anestesia local.
- Recolección de al menos cinco núcleos de áreas sospechosas.
- Examen de muestras por patólogo

musculoesquelético senior.

Búsqueda de amplificación del gen MDM2.

		Speed[r	n/s]	Elasticit	ty[kPa]	
		Average	SD	Average	SD	Depth[cm]
~	1	2.15	0.36	14.3	4.8	1.1
•	2	2.23	0.22	15.0	2.9	1.6
•	3	2.77	0.46	23.7	8.0	1.6
•	4	2.74	0.40	23.0	6.7	1.2
•	5	2.74	0.40	23.0	6.7	1.2
	6	2.22	0.16	14.7	2.1	1.2
	7	2.53	0.22	19.3	3.5	1.2
•	8	2.48	0.11	18.4	1.7	1.2
Me	an		2 48		18.9	
inic.			2.40		10.0	
SD			0.24		3.7	
Median		k.	2.50	18.9		
IQR			0.51	8.1		
IQR/Median		dian	0.21		0.43	

Fig 2: Tabla obtenida tras la medición de los valores de elasticidad de un lipoma.

Barcelona 22/25 MAYO 2024

Análisis estadístico con SPSS versión 21.

- Datos cuantitativos analizados en
 - grupos benignos y malignos.
- También analizados por separado en lipoma, lipoma de células fusiformes, hibernoma y liposarcomas bien

diferenciados.

 Prueba U de Mann-Whitney utilizada debido a la distribución no normal de variables.

Barcelona 22/25 MAY0/2024

RESULTADOS

Barcelona 22/25 MAYO 2024

- Inclusión de 27 pacientes con lesiones lipomatosas:
 - 22 benignas (16 lipomas, 3 lipomas de células fusiformes y 3 hibernomas).
 - 5 tumores malignos (liposarcomas bien diferenciados).
- Distribución por género:

• 16 hombres (59,26%).

- 11 mujeres (40,74%).
- Edad media: 55,3 años (rango: 18-91).

Barcelona MAY0/2024

Profundidad de lesiones:

- 11 profundas (40,74%).
- 16 superficiales (59,26%).
- Todas con márgenes bien definidos.
- Tamaño medio de lesiones: 70,5 mm (rango: 10-240).

Barcelona 22/25 MAYO 2024

Distribución de vascularización:

- 13 central (48,15%).
- 4 periférica (14,81%).
- 10 sin vascularización (37,03%).
- Grado de Doppler en color:
 - Mayoría con grado bajo (12 grado 0,

14 grado 1; 44,44% y 51,85% respectivamente).

 Solo 1 con vascularización significativa (1 grado 2; 3,7%).

Barcelona 22/25 MAYO 2024

- Lesiones malignas vs. Benignas (tabla 1):
 - Elasticidad media: 46,86 vs 19,07 kPa
 - (p=0,006).
 - Elasticidad máxima: 74,4 vs. 33,69 kPa (p=0,013).
 - Desviación estándar: 16,86 vs. 7,6 kPa (p=0,008).

Hypothesis testing summary

Null hypothesis	Test	Significance	Decision
Mean elasticity has the same distribution in benign and malignant categories.	Mann-Whitney U test (independent samples)	0,006	Reject null hypothesis
Max elasticity has the same distribution in benign and malignant categories.	Mann-Whitney U test (independent samples)	0,013	Reject null hypothesis
Elasticity standard deviation has the same distribution in benign and malignant categories.	Mann-Whitney U test (independent samples)	0,008	Reject null hypothesis

Tabla 1: Resumen de los resultados.

Barcelona 22/25 MAYO 2024

- La figura 3 muestra el análisis de la curva ROC.
- Punto de corte óptimo: Elasticidad media: 32,8 kPa.
 - Sensibilidad: 80%.
 - Especificidad: 90,9%.
- Elasticidad máxima: 65,7 kPa.
 - Sensibilidad: 80%.
 - Especificidad: 90,9%.
- Desviación estándar: 9,1.
 - Sensibilidad: 100%.
 Especificidad: 82%.

Barcelona 22/25 MAYO 2024

 Las diferencias entre subgrupos benignos (lipoma, lipoma de células fusiformes y hibernoma) no alcanzaron significación estadística.

•El diagnóstico final de tumores actualizado según clasificación más reciente de la OMS.

Barcelona 22/25 MAYO 2024

CONCLUSIONES

Barcelona 22/25 MAYO 2024

SWE mostró buena especificidad y sensibilidad para distinguir masas lipomatosas benignas de malignas.

No pudo diferenciar entre

subgrupos benignos.

 Lesiones malignas más rígidas y con elasticidad más

heterogénea que las benignas.

Barcelona 22/25 MAYO 2024

- Valores de elasticidad y desviación estándar no interpretables debido a que las curvas ROC no cruzaban la línea de referencia.
- Principales limitaciones:
 - Propiedades técnicas y físicas de la técnica.
 - Influencia de la distancia desde la sonda y tejidos circundantes.
 - Dependencia del operador, dificultando comparaciones.
- A pesar del tamaño de la muestra, la mayor parte de lesiones benignas incluídas eran lipomas, lo que podría explicar la ausencia de diferencias significativas en el subgrupo de tumores benignos.

Barcelona 22/25 MAY0/2024

REFERENCIAS

Barcelona 22/25 MAYO 2024

- 1.Chung, H. W., & Cho, K.-H. (2015). Ultrasonography of soft tissue "oops lesions." Ultrasonography, 34(3), 217–225. https://doi.org/10.14366/usg.14068
- 2. Jacobson, J. A., Middleton, W. D., Allison, S. J., Dahiya, N., Lee, K. S., Levine, B. D., Lucas, D. R., Murphey, M. D., Nazarian, L. N., Siegel, G. W., & Wagner, J. M. (2022). Ultrasonography of Superficial Soft-Tissue Masses: Society of Radiologists in Ultrasound Consensus Conference Statement. *Radiology*, 304(1), 18–30. https://doi.org/10.1148/radiol.211101
- 3. Li, A., Peng, X. J., Ma, Q., Dong, Y., Mao, C. L., & Hu, Y. (2020). Diagnostic performance of conventional ultrasound and quantitative and qualitative real-time shear wave elastography in musculoskeletal soft tissue tumors. *Journal of Orthopaedic Surgery and Research*, 15(1). https://doi.org/10.1186/s13018-020-01620-x
- 4. Casali, P. G., & Blay, J. Y. (2010). Soft tissue sarcomas: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. *Annals of Oncology*, 21(SUPPL. 5). https://doi.org/10.1093/annonc/mdq209
- 5. Cohen, J., Riishede, I., Carlsen, J. F., Lambine, T. L., Dam, M. S., Petersen, M. M., Nielsen, M. B., & Ewertsen, C. (2020). Can strain elastography predict malignancy of soft tissue tumors in a tertiary sarcoma center? *Diagnostics*, 10(3). https://doi.org/10.3390/diagnostics10030148
- 6. Snoj, Ž., Wu, C. H., Taljanovic, M. S., Dumić-Čule, I., Drakonaki, E. E., & Klauser, A. S. (2020). Ultrasound Elastography in Musculoskeletal Radiology: Past, Present, and Future. *Seminars in Musculoskeletal Radiology*, 24(2), 156–166. https://doi.org/10.1055/s-0039-3402746
- 7. Pass, B., Jafari, M., Rowbotham, E., Hensor, E. M. A., Gupta, H., & Robinson, P. (2017). Do quantitative and qualitative shear wave

elastography have a role in evaluating musculoskeletal soft tissue masses? *European Radiology, 27*(2), 723–731. https://doi.org/10.1007/s00330-016-4427-y