Barcelona MAY0/2024

Contribuciones del apredizaje automático: Predicción del Riesgo de Neumotórax Significativo tras Biopsia Percutánea Pulmonar utilizando Modelos Basados en Árboles de

Decisiones

M. E. Chevasco¹, D. Castellón¹, S. Bolivar¹, B. del Rio¹, H. Jofré¹

(1) Thoracic Radiology Department, Bellvitge University Hospital, Barcelona, Spain

Barcelona 22/25 MAYO 2024

Globalización de la biopsia pulmonar transtorácica guiada por TC (CT-TLB), principalmente debido al aumento en [1]:

- Evaluación de enfermedades pulmonares
- 'Screening' de cáncer de pulmón

Complicaciones hasta en el 38.8% [2]

- Neumotórax (PTX) el más frecuente (25.3%)
 - Del 4.3% al 5.6% requiere tratamiento invasivo [3]

Sesgos de selección

- No discriminar Punción–aspiración de aguja fina (PAAF) de la biopsia de aguja gruesa [4]
- No discriminar el neumotórax por severidad.

Barcelona 22/25 MAYO 2024

Generar y validar un modelo de predicción para la ocurrencia de un neumotórax significativo

*borde visible > 2 cm entre el margen pulmonar y la pared torácica, o si se requiere la necesidad de medidas intervencionistas.

- de alto riesgo
- Trayecto parénquima sano
- Distancia pleura–lesion
- Distancia piel–pleura
 Posición paciente
 Longitud cilindro
 Número de pases

Imagen •Tamaño •Ubicación •Composición •Malignidad •Cola pleural

Barcelona 22/25 MAYO 2024

Estudio de casos y controles con inclusión prospectiva

Biopsias percutáneas pulmonares desde Enero 2018 a Diciembre 2022 (n = 639)

Pacientes excluidos (n = 170) - Biopsias mediante PAAF (n = 127) - PTX/derrame pleural pre biopsia

Grupo de validación (n = 140)

Barcelona 22/2 MAY0/2024

MÉTODOS

Variables predictoras $\rightarrow 20$

'Missing Data' ightarrowImputaci[on basada en 'Random Forest'

Modelos $\mathsf{predictivos}
ightarrow$ CART, ADA, GB, XGB

Evaluación modelo \rightarrow AUC, Precisión, PLR, PPR

Variable suceso \rightarrow PTX severo (12.79%)

Selección predictores \rightarrow Algoritmo Boruta Optimización $\mathsf{modelos} \rightarrow$ Abordaje Baeysiano

Comportamiento predictors \rightarrow Análisis SHAP

Barcelona 22/25 MAYO 2024

RESULTADOS

Cada rectángulo representa una variable predictora. Los rectángulos verdes representan las variables predictoras representativas, que de izquierda a derecha incluyen: cola pleural, longitud de cilindro, posición del paciente, trayecto por estructuras de alto riesgo, trayecto por parénquima sano, distancia pleura-lesión, tamaño de lesión, DLCO, y IMC

Barcelona 221 17 MAY0/2024

RESULTADOS

Barcelona 22/25 MAYO 2024

RESULTADOS

Barcelona 22/25 MAYO 2024

DISCUSIÓN

Predictores de PTX severo

- Lesión [5]
 - Menor tamaño (< 22.37 mm)
 - Extremo distal menos 'firme' sobre lesion → ↑
 inestabilidad
 - Mayor profundidad (≤ 36.86 mm)
 - ↑ correctiones trayecto → ↑ riesgo lesiones pleuroparenquimatosas
- Clínicos
 - Menor DLCO [6]
 - \uparrow daño membrana alveolocapilar \rightarrow \uparrow fragilidad
 - Menor IMC (≤ 26.5) [7]
 - Paradoja de la obesidad
 - \uparrow tejido adiposo \rightarrow \uparrow presión intratorácica \rightarrow \checkmark **movilidad torácica**
- Procedimientales [8]
 - Posición supino y lateral
 - J movilidad pared torácica
- Modelos predictivos basados en árboles
 - Correcto rendimiento \rightarrow AUC 76.82%
 - Ventajas sobre modelos lineales (regresión

logística/binaria) [9]

- Jimportancia de multicolinearidad
- Permite 个个 variables predictoras sin 个 riesgo de 'overfitting'

Barcelona 22/25 MAYO 2024

CONCLUSIÓN

3 escenarios que incrementan el riesgo

de PTX severo:

- Trayecto por superficies de alto riesgo en paciente en posición supino o lateral
- Si las superficies de alto riesgo no están comprometidas, cuando el tamaño de la lesión es:
 - Menor de 22.37 mm y el IMC es menor de 26.5, ó
 - Mayor de 22.37 mm y la profundidad de la lesión es mayor de 36.86 mm.

Paradoja de obesidad

- Menor riesgo PTX en sobrepeso y obesidad
 - Hipoventilación $\rightarrow \downarrow$ movimiento torácico

LIMITACIONES

- Dada baja incidencia de PTX (12%) se ajustó el peso de los grupos manualmente
 - Aumento de riesgo de 'overfitting'
- No se separaron los grupos por años de experiencia de radiólogo que efectuaba procedimiento.

Barcelona 22/25 MAYO 2024

REFERENCIAS BIBLIOGRÁFICAS

- E.A. Ruud, K. Stavem, J.T. Geitung, A. Borthne, V. Søyseth, H. Ashraf, Predictors of pneumothorax and chest drainage after percutaneous CT-guided lung biopsy: A prospective study, Eur. Radiol. 31 (2021) 4243–52.
- WJ. Heerink, GH. De Bock, GJ. De Jonge, HJM. Groen, R. Vliegenthart, M. Oudkerk M, Complication rates of CT-guided transthoracic lung biopsy: meta-analysis, Eur Radiol. 27 (2017) 138–48.
- E.J. Hwang, J.H. Hong, K.H. Lee, J.I. Kim, J.G. Nam, D.S. Kim, et al, Deep learning algorithm for surveillance of pneumothorax after lung biopsy: a multicenter diagnostic cohort study, Eur. Radiol. 30 (2020) 3660–71.
- Y. Zhao, D. Bao, W. Wu, W. Tang, G. Xing, X. Zhao, Development and validation of a prediction model of pneumothorax after CTguided coaxial core needle lung biopsy, Quant. Imaging Med. Surg. 12 (2022) 5404–19.
- Y. Shiekh, W.A. Haseeb, I. Feroz, F.A. Shaheen, T.A. Gojwari, N.A. Choh, Evaluation of various patient-, lesion-, and procedurerelated factors on the occurrence of pneumothorax as a complication of CT-guided percutaneous transthoracic needle biopsy, Polish. J. Radiol. 84 (2019) 73–79.
- EA. Ruud, S. Heck, K. Stavem, V. Søyseth, JT. Geitung, H. Ashraf, Low diffusion capacity of the lung predicts pneumothorax and chest drainage after CT-guided lung biopsy. BMC Res Notes. 15 (2022) 353.
- AE. Dixon, U. Peters, The effect of obesity on lung function, Expert Rev Respir Med. 12 (2018) 755–67.
- H. Lal, Z. Neyaz, A. Nath, S. Borah, CT-Guided Percutaneous Biopsy of Intrathoracic Lesions, Korean J. Radiol. 13 (2012) 210.
- C. Cammarota, A. Pinto, Variable selection and importance in presence of high collinearity: an application to the prediction of lean body mass from multi-frequency bioelectrical impedance, Journal of Applied Statistics. 48 (2021) 1644–58.