Treatment-Induced Neurotoxicity after Chemotherapy & Immunotherapy: Part 1

> Puac P¹, MD, MSc; Castillo M² MD, FACR; Torres C¹, MD, FRCPC

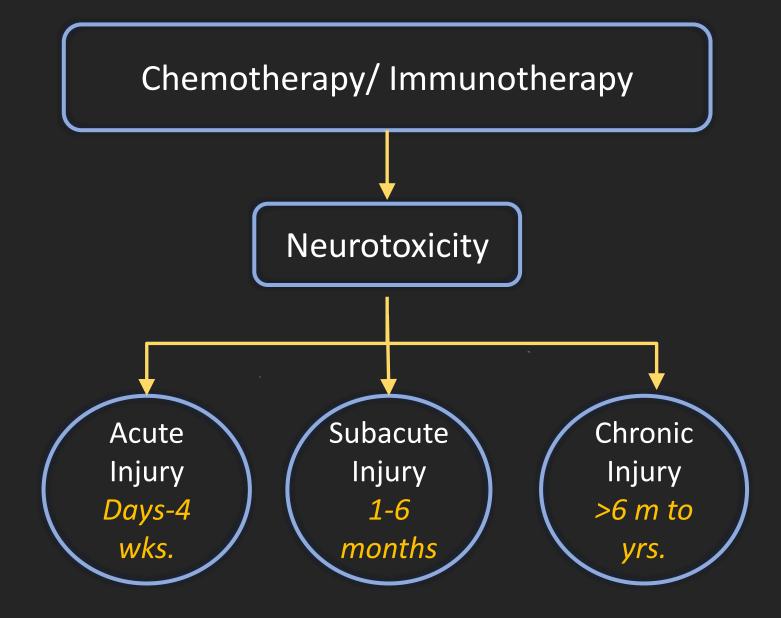
> ¹University of Ottawa, ON, Canada ²University of North Carolina at Chapel Hill, USA

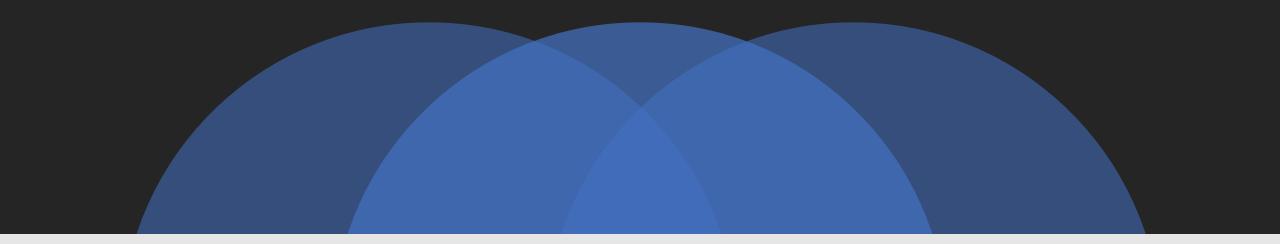
Disclosures

None of us or our immediate family members have a financial relationship with a commercial organization that may have a direct or indirect interest in the content.

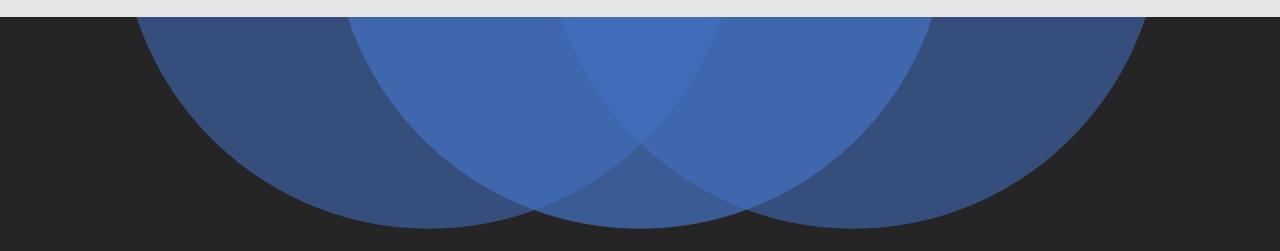
After completing this exhibit, participants will be able to:

- *Recognize imaging abnormalities found during & after chemotherapy & immunotherapy of the CNS.*
- Classify side effects of these oncologic therapies into acute, subacute & chronic stages.


Target Audience

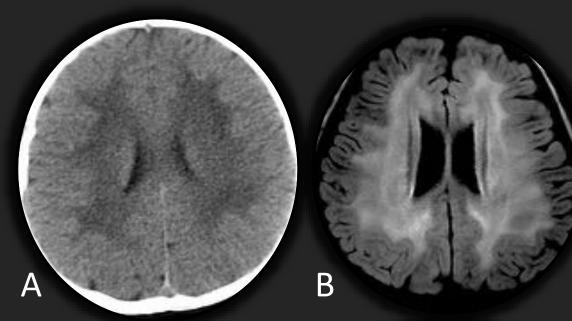

• This exhibit is primary intended for diagnostic radiologists and neuroradiologist. Internists and oncologists may also find it useful.

Interesting and Common Facts

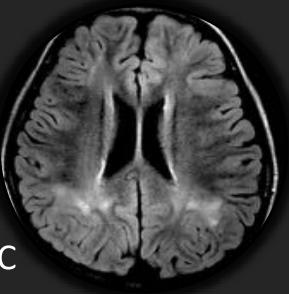

- An adverse drug reaction (ADG) is defined by the WHO as "one that is noxious, unintended & occurs at doses normally used in humans".
- Treatment-induced neurotoxicity is a significant cause of morbidity in 30-50% of cancer patients.
- *New patterns* of neurotoxicity have emerged due to development of new anticancer drugs.
- Neurotoxicity is the *second most common* dose-limiting factor after myelosuppression & is a diagnosis of exclusion.

Timing of Neurotoxicity

Chemotherapy-Induced Neurotoxicity



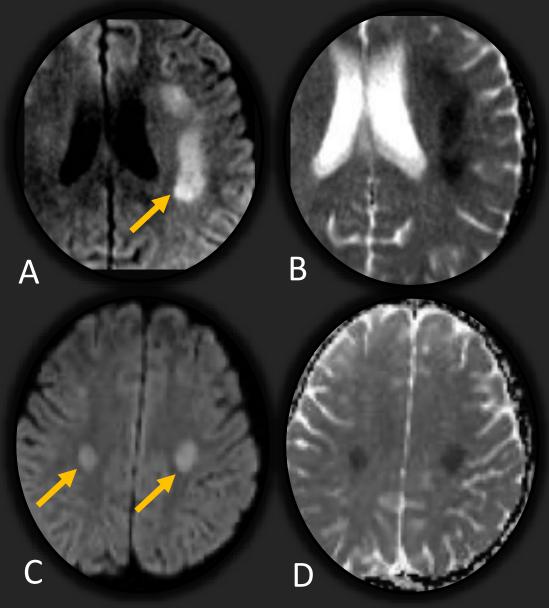
Chemotherapy & the war on cancer...


- *Primary aim* of chemotherapy is to reduce tumor burden.
- Not curative in majority of cancers, mainly given as palliative Tx.
- 5-year survival benefit attributable solely to chemo in adult malignancies is 2.1% in the USA.
- *"Top-five"* chemo-sensitive cancers: testicular cancer, Hodgkin's and non-Hodgkin's lymphoma, cervical & ovarian cancer.
- It is associated with numerous severe side effects & affect all organs.
- Given its relatively low tumor specificity & high toxicity, biological therapy (immunotherapy) as shows promising results in cancer control with better tolerance.

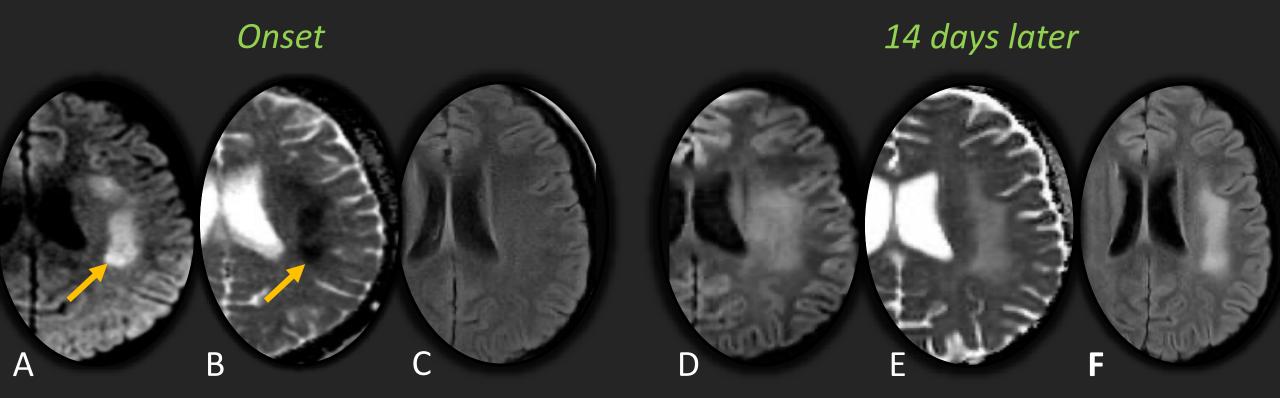
Acute Injury Chemo-Induced Reversible Leukoencephalopathy

- Reversible acute white matter changes after chemo or immunotherapy.
- Non-fatal condition.
- Acute reactions are usually mild & of little consequence but severe reactions may occur.
- White matter changes reverse rapidly after cessation of therapy, within 1-4 weeks.

Reversible leukoencephalopathy. Acute white matter changes (A,B) following MTX which rapidly reversed 2 months after drug cessation (C).



Acute Injury


Acute Methotrexate (MTX) Neurotoxicity

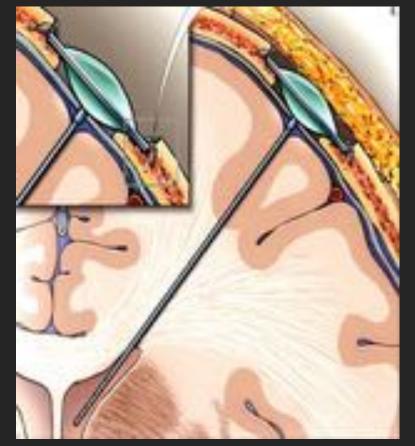
- Usually 5-14 days after 3rd course of MTX.
- Findings:
 - Uni (top row) or bilateral (bottom row) restricted diffusion on DWI (arrows) in periventricular white matter, without T2/FLAIR abnormality (acute stage).
 - Restricted diffusion *resolves within 2-3 weeks* while T2/FLAIR start to show signal abnormality.

Most patients can resume MTX without permanent neurological sequelae.

Signal Changes on DWI vs. FLAIR

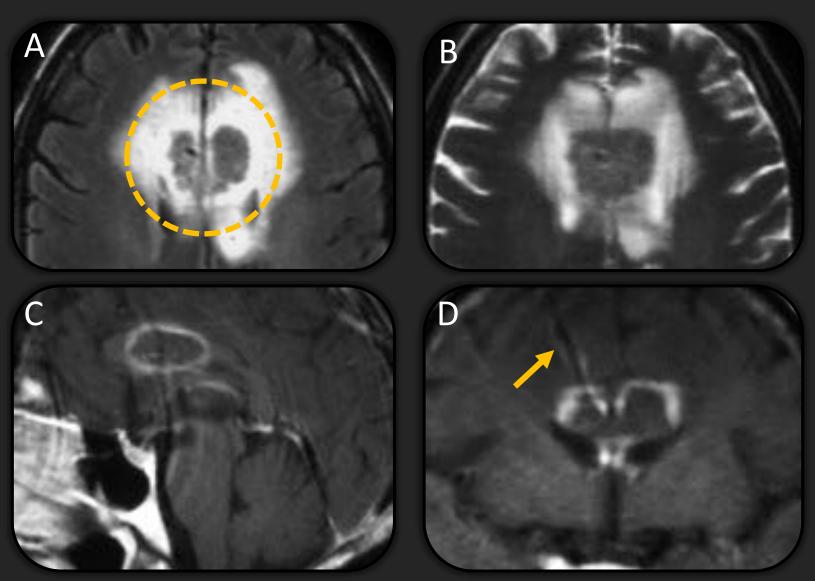
MTX neurotoxicity. In the acute onset, DWI (A,B) shows restricted diffusion in the white matter (arrow) w/o changes on FLAIR (C). 2 weeks later, ADC signal changes start to decrease while signal changes on FLAIR are present.

MTX-Induced Focal Cerebral Necrosis


- Associated with ventricular access devices (e.g. ommaya reservoir) for administration of chemo.
- Rare complication (0.6%).

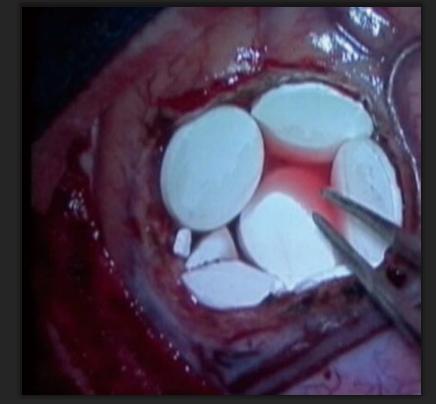
Acute

Injury

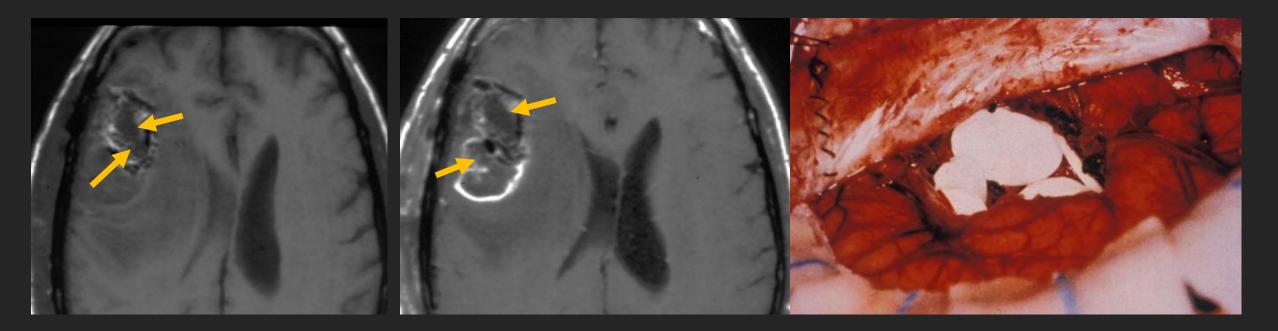

 2ry to catheter malposition, malfunction or disconnection with chemo release into the brain parenchyma inducing focal necrosis.

No benefit of ventricular vs. intrathecal route has been demonstrated; however, a longer progression-free survival has been seen with intraventricular MTX.

Ommaya Reservoir


Focal Cerebral Necrosis after Ommaya Reservoir Malposition

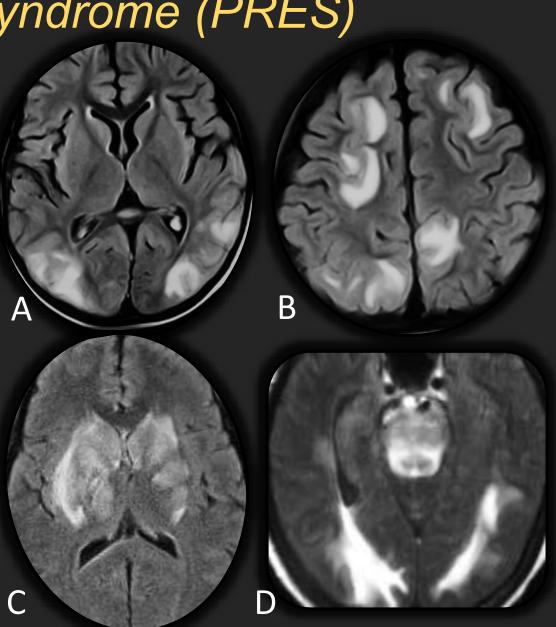
Focal cerebral necrosis (dotted circle) demonstrating hypointense signal on FLAIR (A) & T2 (B) with ring enhancement (C,D) involving the anterior body of corpus callosum & previous catheter tract (arrow).


Chemo-Wafers Induced Focal Inflammatory Response

- Chemo-impregnated (carmustine) wafers placed in the resection cavity for treatment of 1ry high-grade brain tumors.
- Provide controlled release of chemo over a period of 2-3 wks.
- Increased *wound healing & infections complications* are reported.
- Increase enhancement & pericavitary T2/FLAIR signal changes within *first 2 months* with subsequent decrease of inflammatory response are reported on MRI.

Intracavitary wafers (white round structures) along walls of surgical cavity. *World J Radiol. 2011 Nov 28; 3(11):* 266–272.

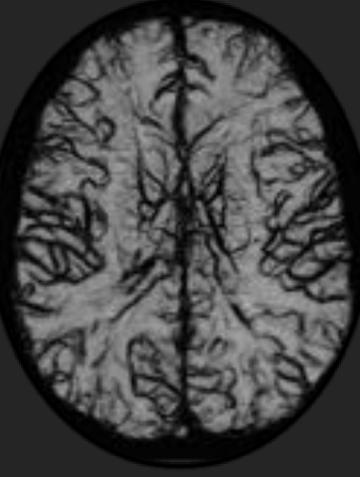
MRI Appearance of Chemo Wafers


Chemo wafers are seen as linear non enhancing areas (arrows in A & B) placed in surgical bed (C).

Wafers have shown a marginally improve median survival compared with RT alone; however, no prospective data is available when compared with current standard TMZ/RT.

Chemo-associated Posterior Reversible Encephalopathy Syndrome (PRES)

- Multidrug chemotherapy more frequently results in PRES than single-agent therapy.
- Occurs 1-4 weeks after Tx, > women.
- Findings:
 - Classic PRES: bilateral symmetric hemispheric subcortical edema on T2/FLAIR involving anterior & posterior circulation (A,B).
 - Central PRES: High signal on T2/FLAIR within basal ganglia & brainstem (C,D).

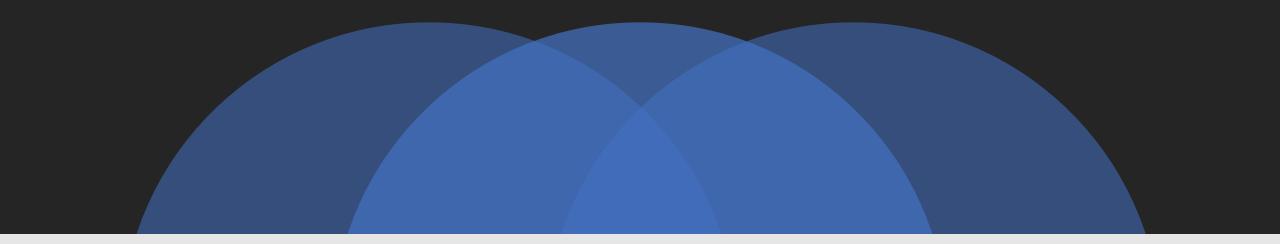

Symptoms resolve within 7-10 days whereas MRI findings in 20-30 days.



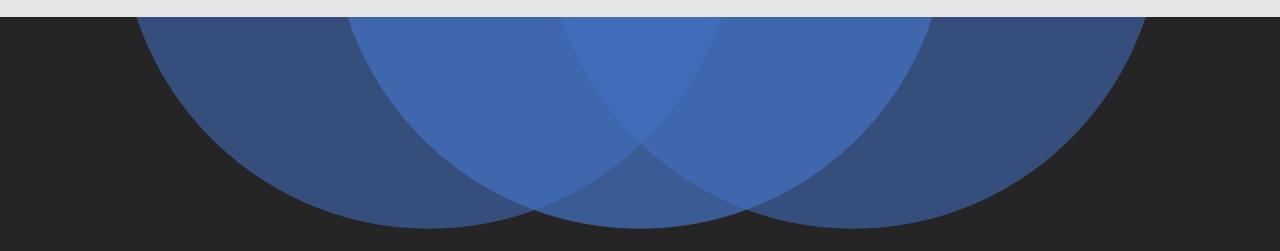
Subacute effect

Chemo-Induced Anemia & Iron Deficiency (ID)

- Frequent complications in patients treated with chemo.
- Anemia may decrease the response to treatment & reduce overall survival (OS).
- *Treatment*: erythropoiesis-stimulating agents (ESAs), iron preparations & red blood cells transfusions.
- ID is treated when serum ferritin <100 ng/ml & before initiation of ESA therapy.
- No neurotoxicity is associated with I.V. iron therapy; however, it causes increased susceptibility on MRI due to paramagnetic properties of iron in blood vessels (image) of no clinical significance.


SWI (A) shows an increase susceptibility in blood vessels, both arterial & venous (A, arrows), without parenchymal abnormalities on T2-WI & DWI (B & C, respectively), nor signs of venous thrombosis on T1 post-Gd (D).

Degree of signal loss is proportional to iron concentration.

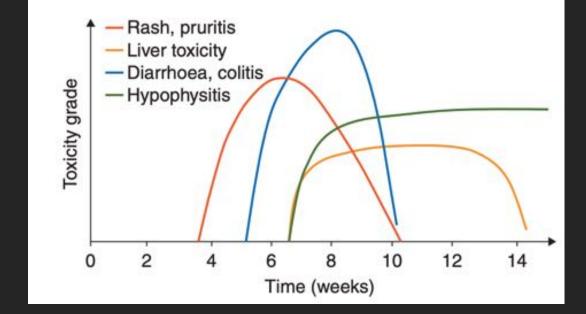

Disseminated Necrotizing Leukoencephalopathy (DNL)

- Severe, progressive, fatal leukoencephalopathy (1-3 months after Tx).
- Rare condition (2%) usually after MTX for hematological diseases or lymphoma.
- Greater risk when combined with RT.
- Findings:
 - Extensive white matter involvement (A,B).
 - Multiple low signal foci in white matter on *Main/FLAD (arrow)* with podularis is enhancement (arrowheads) progression of recurrence of 1ry disease

Immunotherapy-Induced Neurotoxicity

Cancer Immunotherapy

- Goal: treat cancer by generating or augmenting an immune response against it.
 - Clinical trials have demonstrated improved OS of patients with advanced-stage cancer.


• Two types

- Immune-cell-targeted monoclonal antibody (mAb) therapy
 - T-Cell function stimulated with mAb that either block or target their inhibitory/stimulatory receptors, respectively. (e.g. rituximab, ipilimumab).
- Adoptive cellular therapy (ACR)
 - Robust immune-mediated response through ex vivo manipulation of T cells. (e.g. chimeric antigen receptor [CAR] into T cells).

Ipilimumab-Induced hypophysitis (IH)

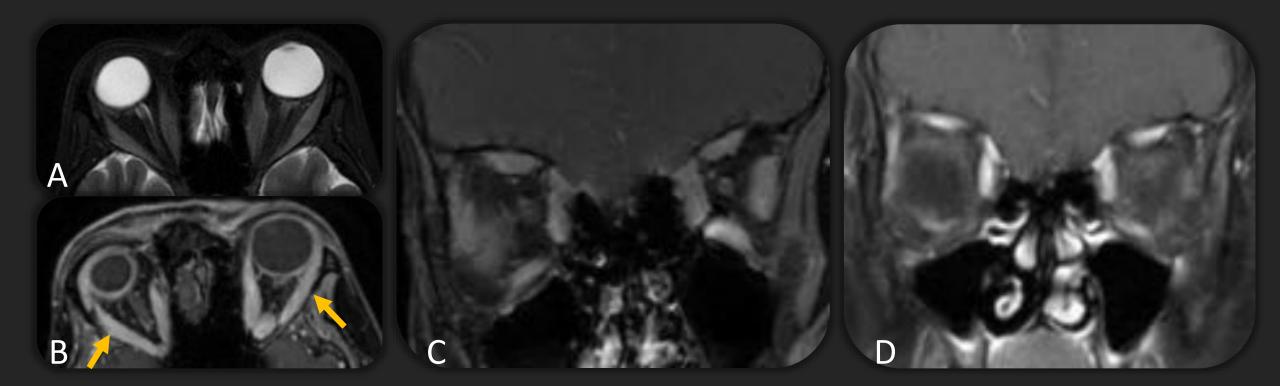
- MoAb for treatment of metastatic or stage III melanoma.
- Adverse events occur in 60-85% of patients; IH has an incidence of 0-17% >6 wks-3 mo after Tx.
- Incidence is dose-dependent: 3 mg/kg, 10 mg/kg reported to be 1% & 16%, respectively.
- Etiology remains unknown: ? mononuclear cell infiltration of pituitary gland.

Timing of occurrence of adverse events following Ipilimumab treatment.

IH, Imaging Findings

MRI Findings:

- Enlargement of the infundibulum & pituitary gland.
- Uniform or heterogeneous enhancement.
- Pituitary gland returns to normal size within 4-6 weeks after steroids in all patients (table).

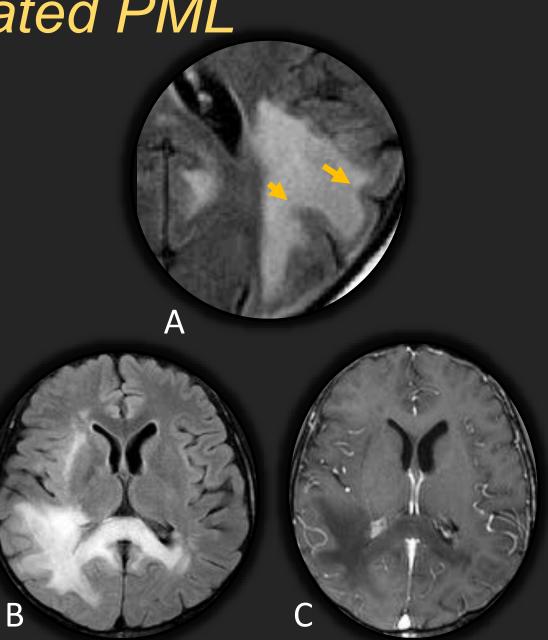

	Faje et al. [17]	Min et al. [18]	Albarel et al. [16]	Total
Cohort size (male/female)	154 (99/55)	187 (118/69)	87-131° (-)	428-472
Hypophysitis (n. %)	17, 11.0 %	25, 13.3 %	15, 11.4-17.2 %	57, 12.0-13.3 %
Hypophysitis (male/female)	15/2	19/6	10/5	44/13
Hypophysitis mean age (y)	68.2	-	55.5	-
Dosage (3, 10 mg/kg)	13, 4	17, 8	2-4, 11-13*	32-34, 23-25
Median time to diagnosis after Ipi initiation (wks)	8.4	9	95	-
Radiographic pituitary enlargement	17/17	15/25 ^b	12/14 ⁶	44/56"
Visual defects	0/17	0/25	0/15	0/57
Hyponateenia	8/14	14/25	The second second	22/39
Most common presenting symptoms	HA (14/17), fatigue (10/17)	-	HA (13/15), fatigue (11/15)	HA (27/32), Fatigue (21/32)
Hypopituitarism at diagnosis				
Thyroid	17/17	22/25	13/15	52/56
Adrenal	7/14	22/25	11/15	40/54
Gonadal	15/15	15/20	12/14	42/49
Growth hormone (IGF-1)	1/6	3/7	2/8	6/21
Prolactin (elevated, low)	0/13, 12/13	1/9, 4/9	1/9, 3/9	2/31, 19/31
Diabetes Insipidus	0/17	0/25	0/15	0/57
Resolution of pituitary enlargement	17/17	11/11	12/12	40/40
Hypopitaitarism at most recent followup	17 A 4 4 57	4.4.00000	1000.0	10000
Thyroid	23/17	8/25	2/15	23/57
Adrenal	14/17	22/25	13/15	49/57
Gonadal	13/15	8/25	2/15	23/57
Growth hormone (IGF-1)	-	-	1/11	1/11
Prolactin (elevated, low)	-	-	1/11, 1/11	1/11, 1/11

IH in a patient treated for metastatic melanoma. A) baseline study, B) 2 months after ipilimumab there is diffuse enlargement & enhancement of pituitary gland & infundibulum (B, dotted circle). C) resolution 1 month after steroids & cessation of immunotherapy.

MRI findings can precede clinical diagnosis in some

Companion Case: Immunotherapy-Induced Ocular Myositis

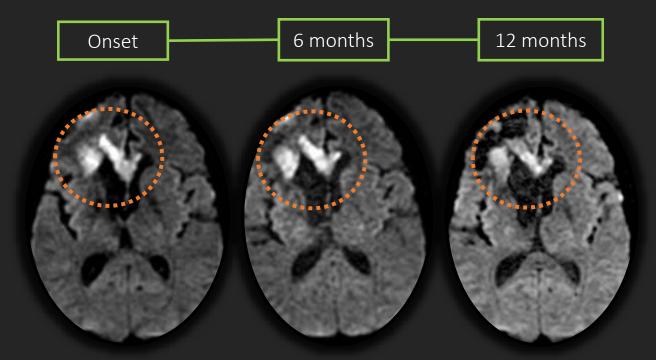
Patient with metastatic RCC & combined, nivolumab + ipilimumab, immunotherapy. Axial T2-WI (A) & T1 post-Gd (B&C) demonstrate diffuse thickening & enhancement of bilateral extraocular muscles (arrows) that resolved after therapy interruption & steroids (D).


Chronic Injury

Rituximab-associated PML

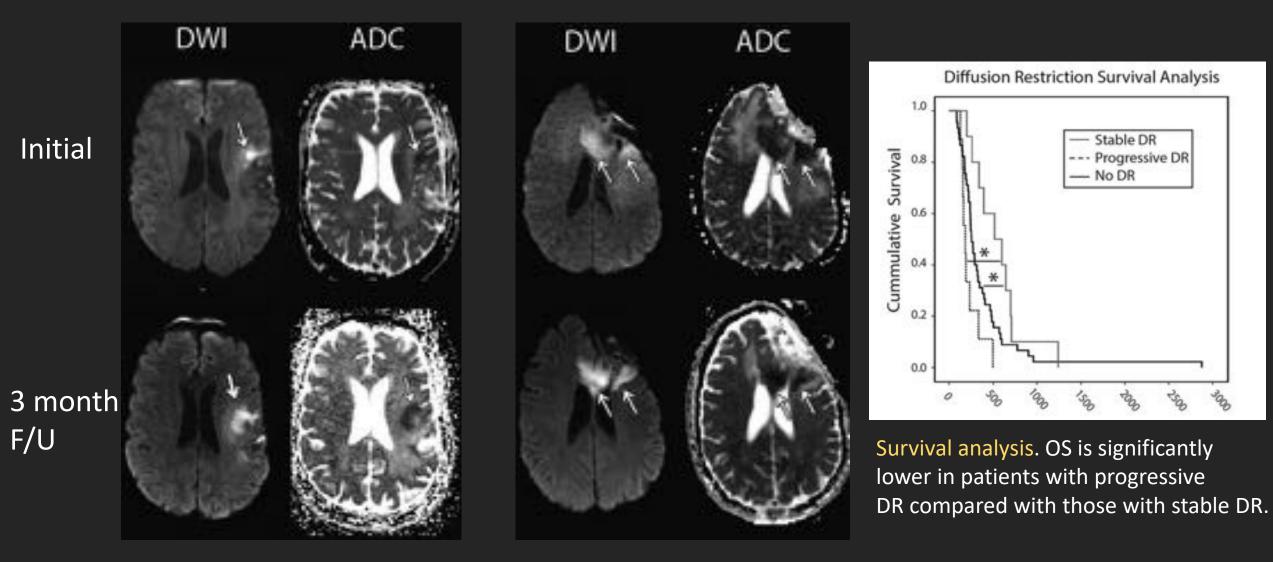
 Immunotherapy affects mainly anti-JCV antibody positive patients 0-12 months after Tx initiation.

• Findings:


- Asymmetric multifocal involvement of supra (subcortical U fibers, arrows in A) or infratentorial (cerebellar peduncles) white matter structures; usually without mass effect (B) or enhancement (C).
- PML-IRIS is observed in up to 70% of cases after discontinuation of *PML-immunotherapy has better survival rates than PML-AIDS, 80% vs 50% at 1 year, respectively.*

Chronic Injury

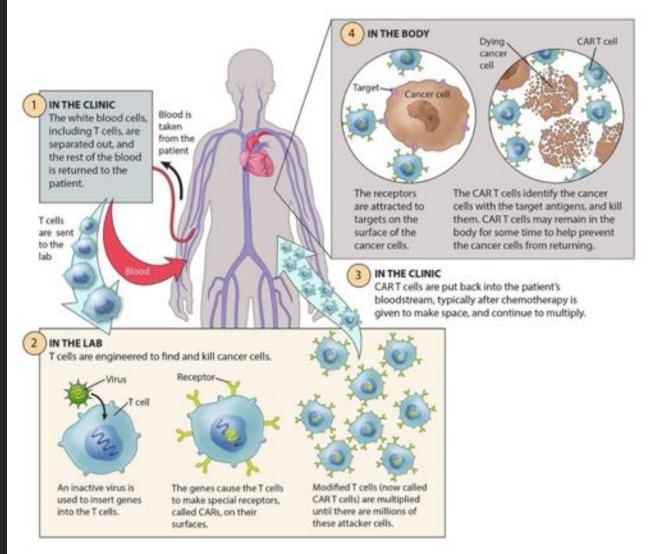
Bevacizumab-Induced Diffusion Restricted (DR) in Malignant Gliomas


- Regions of DR represent coagulative necrosis surrounded by viable tumor.
- Time to develop DR regions after Bevacizumab: 30-700 days.
- Predisposition in unmethylated MGMT gliomas.
- Findings:
 - Progressive or stable areas of DR in postop region, along ventricles or corpus callosum.
 - Progressive areas likely to represent tumor progression.

Stable region of DR over 12 months (dotted circles) involving right frontal lobe & corpus callosum in a patient treated for GB. Onset was 1 month after initiation of Bevacizumab.

Progressive DR

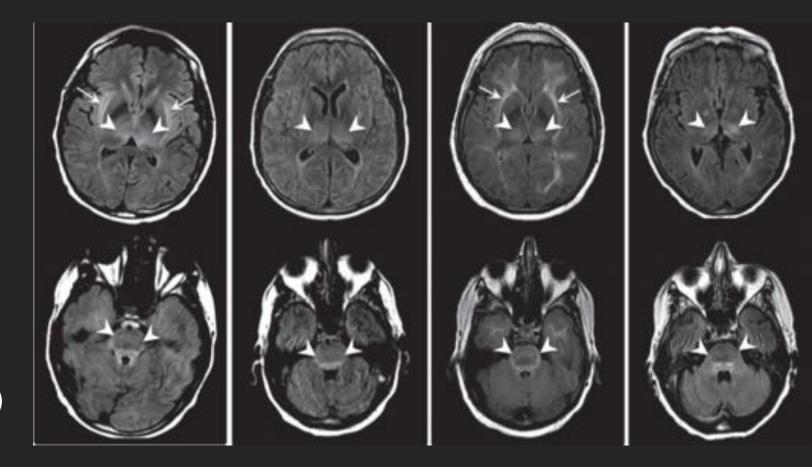
Stable DR



Progressive DR lesions - decreased overall survival (OS).

CAR T-cell Therapy Induced Neurotoxicity

- Chimeric antigen receptor (CAR) T-cell therapy.
- "fifth pillar" treatment for hematologic cancers.
- Indications
 - Diffuse large B-cell lymphoma
 - Young adult leukemia
 - Adult non-Hodgkin lymphoma
- <u>Toxicities</u>
 - Cytokine release syndrome (CRS).
 - CAR-T-cell-related encephalopathy syndrome (CRES).
 - Typically occurs after start of CRS.


CAR I-cell Therapy, now does it work?

© Fran Milner, 2017

CAR T-cell Therapy Induced Neurotoxicity

- Incidence of neurotoxicity in pediatric & adult population: 40-45%
- 2 forms of neurotoxicity:
 - Mild (no imaging findings)
 - Severe
 - White matter involvement (arrows)
 - Thalami (arrowheads)
 - Brainstem (arrowheads)

- 1ry aim of chemotherapy is to reduce tumor burden whereas aim of immunotherapy is to generate systemic protective anticancer immunity.
- Recognition of patterns of neurotoxicity after oncologic treatment is important because drug discontinuation or dose adjustment may prevent further neurological injury & change outcome.
- Radiologists need to be familiar with side effects of cancer therapy in CNS in order to accelerate the correct diagnosis & minimize as much as possible associated morbidity.

- Nguyen XHS, Milbach XN, Hurrell XSL, et al. Progressing Bevacizumab-Induced Diffusion Restriction Is Associated with Coagulative Necrosis Surrounded by Viable Tumor and Decreased Overall Survival in Patients with Recurrent Glioblastoma. *AJNR Am J Neuroradiol*. 2016;37(12):1-8. doi:10.3174/ajnr.A4898
- Soussain C, Ricard D, Fike JR, Mazeron JJ, Psimaras D, Delattre JY. CNS complications of radiotherapy and chemotherapy. *Lancet*. 2009;374(9701):1639-1651. doi:10.1016/S0140-6736(09)61299-X
- Schirrmacher V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). *Int J Oncol.* 2019;54(2):407-419. doi:10.3892/ijo.2018.4661
- Ashby LS, Smith KA, Stea B. Gliadel wafer implantation combined with standard radiotherapy and concurrent followed by adjuvant temozolomide for treatment of newly diagnosed high-grade glioma: A systematic literature review. *World J Surg Oncol.* 2016;14(1):1-15. doi:10.1186/s12957-016-0975-5
- Colen RR. Magnetic resonance imaging appearance and changes on intracavitary Gliadel wafer placement: A pilot study. *World J Radiol*. 2011;3(11):266. doi:10.4329/wjr.v3.i11.266
- Fidalgo JAP, Fabregat LG, Cervantes A, et al. clinical practice guidelines Management of chemotherapy extravasation : ESMO EONS Clinical Practice Guidelines † clinical practice guidelines. 2017;23(December). doi:10.1093/annonc/mds294
- Stupp R, Brada M, Van Den Bent MJ, Tonn J-C, Pentheroudakis & G. High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up † on behalf of the ESMO Guidelines Working Group * incidence and epidemiology. *Ann Oncol.* 2014;25(April):iii93-iii101. doi:10.1093/annonc/mdu050
- Le Rhun E, Weller M, Brandsma D, et al. EANO-ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up of patients with leptomeningeal metastasis from solid tumours. *Ann Oncol*. 2017;28(Supplement 4):iv84-iv99. doi:10.1093/annonc/mdx221
- Roselló S, Blasco I, Garća Fabregat L, Cervantes A, Jordan K. Management of infusion reactions to systemic anticancer therapy: ESMO Clinical Practice Guidelines. *Ann Oncol.* 2017;28(Supplement 4):iv100-iv118. doi:10.1093/annonc/mdx216

- Faje A. Immunotherapy and hypophysitis: clinical presentation, treatment, and biologic insights. *Pituitary*. 2016;19(1):82-92. doi:10.1007/s11102-015-0671-4
- Berger JR, Malik V, Lacey S, Brunetta P, Lehane PB. Progressive multifocal leukoencephalopathy in rituximab-treated rheumatic diseases: a rare event. *J Neurovirol*. 2018;24(3):323-331. doi:10.1007/s13365-018-0615-7
- Neil EC, DeAngelis LM. Progressive multifocal leukoencephalopathy and hematologic malignancies: a single cancer center retrospective review. *Blood Adv.* 2017;1(23):2041-2045. doi:10.1182/bloodadvances.2017008201
- Lee, MSN, RN, ANP-BC EL, Westcarth, MSN, RN, ANP-BC L. Neurotoxicity Associated With Cancer Therapy. *J Adv Pract Oncol.* 2012;3(1):11-21. doi:10.6004/jadpro.2012.3.1.2
- How J, Blattner M, Fowler S, Wang-Gillam A, Schindler SE. Chemotherapy-associated Posterior Reversible Encephalopathy Syndrome: A Case Report and Review of the Literature. *Neurologist*. 2016;21(6):112-117. doi:10.1097/NRL.000000000000105
- Wilson R, Osborne C, Halsey C. The Use of Ommaya Reservoirs to Deliver Central Nervous System-Directed Chemotherapy in Childhood Acute Lymphoblastic Leukaemia. *Pediatr Drugs*. 2018;20(4):293-301. doi:10.1007/s40272-018-0298-9
- Lau D, Rowland N, Devasagaya S, McDermott MW. Recession of Ommaya Reservoir Improves Cosmesis in Patients Undergoing Intrathecal Chemotherapy for Leptomeningeal Disease: a Technical Note. *Cureus*. 2012;4(11). doi:10.7759/cureus.66
- Valand HA, Huda F, Tu RK. Chimeric antigen receptor T-cell therapy: What the neuroradiologist needs to know. *Am J Neuroradiol*. 2019;40(5):766-768. doi:10.3174/ajnr.A6042
- Santomasso BD, Park JH, Salloum D, et al. Clinical and biological correlates of neurotoxicity associated with car t-cell therapy in patients with B-cell acute lymphoblastic leukemia. *Cancer Discov.* 2018;8(8):958-971. doi:10.1158/2159-8290.CD-17-1319

Author Contact Information:

puacpaulo@gmail.com ppuacpolanco@toh.ca