

MRI Detection of Intratumoral Fat in Colorectal Liver Metastases after Preoperative Chemotherapy

Yudai Nakai¹, Wataru Gonoi¹, Akifumi Hagiwara¹,Yujiro Nishioka², Hiroyuki Abe³, Junichi Shindoh⁴, Kiyoshi Hasegawa², Osamu Abe¹

1) Department of Radiology, Graduate School of Medicine, The University of Tokyo

2) Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo

3) Department of Pathology, Graduate School of Medicine, The University of Tokyo

4) Hepatobiliary-Pancreatic Surgery Division, Department of Digestive Surgery, Toranomon Hospital

Introduction

• Curative liver resection is the most effective treatment for colorectal liver metastasis (CLM).

Ann Surg 247: 125-135, 2008.

- More effective predictors of response to chemotherapy are required.
- We have occasionally observed intratumoral fat deposition in CLMs

Materials and Methods; Patients

• Patients who underwent preoperative MRI and curative surgery for CLM after preoperative chemotherapy.

Consecutive patients who underwent surgery for colorectal liver metastases (n = 242)

No preoperative chemotherapy (n = 154)

Imaging Analysis

- Dual-echo T1-weighted GRE MR images were acquired for all patients.
- Two radiologists (5 and 6 years of experience in abdominal imaging).
- Intratumoral fat deposition in CLMs, number and maximum diameter of CLMs, presence/absence of fatty liver, presence/absence of intratumoral calcification, and response to chemotherapy according to RECIST version 1.1 and

after preoperative chemotherapy on dual-echo gradient-recalled echo (GRE) MRI.

Purpose

• To investigate the incidence and clinical significance of fat deposition in CLMs after preoperative chemotherapy by dual-echo GRE MRI.

morphologic response criteria were assessed on CT and/or MRI. Eur J Cancer 45: 228-247, 2009.

Jama 302: 2338-2344, 2009.

Evaluation of intratumoral fat deposition

- Qualitative evaluation by subtraction of opposed-phase from in-phase images.
- Quantitative evaluation by calculating fat signal fraction (FSF).

$$SF = \frac{SI_{IP} - SI_{OP}}{2(SI_{IP})} \times 100$$

SI_{IP} and SI_{OP} are the signal intensities of the lesion in in-phase and opposed-phase images, respectively. Radiology 153: 189-194, 1984. J Magn Reson Imaging 34: spcone, 2011.

A: T1-weighted In-phase image	B: T1-weighted opposed-phase image	A, B: A 67-year-old man with CLM after chemotherapy C, D, E: A 71-year-old man with CLM after chemotherapy
C: T1-weighted In-phase image	D: T1-weighted opposed-phase image	E: Subtraction image

- An elliptical region of interest (ROI) for determining signal intensities was drawn as large as possible to cover the region with fat deposition (Fig. A, B).
- In case of focal or heterogeneous intratumoral fat deposition, the ROI was drawn focally to cover only the region with fat deposition (Fig. C, D).
- Qualitative intratumoral fat deposition was determined using subtraction image (Fig. E).
- FSF was measured for all lesions having intratumoral fat, in which the highest value in each patient was used for analysis.
- SI_{IP} and SI_{OP} were measured three times, and the average values were used for analysis.

Clinical Factors

• Age, sex, BMI, OS, and RFS.

- Primary site of tumor, primary tumor nodal status, extrahepatic disease, DFI, No. of chemotherapy cycles, and presence or absence of adjuvant chemotherapy.
- Preoperative serological data (serum cholesterol, triglyceride, HbA1c, CEA, and CA19-9).

Histological Analysis

- Specimens of CLMs from patients who did not undergo chemotherapy between final MRI and hepatectomy (56 of 59 patients).
- The lesions were classified into groups separated by 5% based on tumor viability. J Clin Oncol 26: 5344-5351, 2008.

Statistical Analysis

- Fisher's exact test, Spearman's rank correlation analysis, log-rank test, Cox proportional hazard model, multivariate logistic regression analysis, Cohen's coefficient kappa, Kendall's coefficients of concordance and Ebel's intraclass correlation coefficients.
- Multivariate analysis with stepwise backward selection and preceding backward elimination of variables identified as relatively significant (p < .15) upon univariate analysis.

Note—BMI = body mass index; CA19-9 = carbohydrate antigen 19-9; CEA = carcinoembryonic antigen; DFI = disease-free interval from diagnosis of primary tumor to diagnosis of liver metastasis; OS = overall survival; RFS = recurrence-free survival.

Characteristics	Values		
Median age, years [range]	62 [28-79]		
Sex, No. [%]			
Male/female	33/26 [56/44]		
Primary tumor, No. [%]			
Rectum/colon	15/44 [25/75]		
Histopathological types of primary tumors, No. [%]*			
Well-differentiated adenocarcinoma	20 [34]		
Moderately differentiated adenocarcinoma	33 [56]		
Mucinous adenocarcinoma	3 [5]		
Papillary adenocarcinoma	1 [2]		
Not available	2 [3]		
Primary tumor nodal status, No. [%]			
Positive/negative	44/15 [75/25]		
Extrahepatic disease, No. [%]			
Present/absent	12/47 [20/80]		
DFI, year, No. [%]			
< 1/≥ 1	38/21 [64/36]		
Median number of CLMs, No. [range]	4 [1-39]		
Median largest tumor size before surgery, cm [range]	2.6 [0.7-7]		
Fluorouracil-based chemotherapy regimen, No. [%]			
Oxaliplatin	37 [63]		
Irinotecan	8 [13]		
Oxaliplatin + irinotecan	1 [2]		
Neither oxaliplatin nor irinotecan	1 [2]		
Two or more regimens	12 [20]		
Bevacizumab, No. [%] [†]			
Yes/no	32/27 [54/46]		
Cetuximab or panitumumab, No. [%] [†]			
Yes/no	27/32 [46/54]		
Median no. of chemotherapy cycles before surgery, No. [range]	8 [4-56]		
Postoperative adjuvant chemotherapy, No. [%]			
Yes/no	24/35 [41/59]		
Surgical margin, No. [%]			

Results

Patient Characteristics

• n = 59

- The median follow-up period was 36.6 months.
- (range, 1.1–106.6 months)
- 25 deaths (42%) occurred.
- 2 patients (3%) died within 90 days of surgery.
- 44 (75%) tumor recurrence occurred.
- All Chemotherapy were Fluorouracilbased.
- Extrahepatic lesions were radically resected during or after hepatectomy

Note—CLMs = colorectal liver metastases; DFI = disease-free interval from diagnosis of primary tumor to diagnosis of liver metastasis; R0 = microscopically negative surgical margin; R1 = microscopically positive surgical margin. *Six patients (10%) had metachronously received bevacizumab and either cetuximab or 42/17 [71/29] panitumumab

Results; Intratumoral Fat Before and After Chemotherapy

- Intratumoral fat deposition was qualitatively detected in 32 (32/59; 54%) patients after chemotherapy.
- In 20 patients with pre-chemotherapeutic MRI,

0 (0/20; 0%) patients before chemotherapy with intratumoral fat 9 (9/20; 47%) patients after chemotherapy with intratumoral fat.

Fat signal fraction

Preoperative Predictors of Overall Survival by Cox Proportional Hazard Model

Factor		No. of	5-Year	Median OS (months)	Univariate Analysis			Multivariate Analysis		
		Patients OS (%)	OS (%)		P	HR	95% CI	P	HR	95% CI
Age, years	≥65	27	33.7	44,4	0.10	1.96	0.88-4.37	0.02	2.81	1.18-6.71
	< 65	32	61.8	NA						
Sex	Male	33	49.1	49.5	0.49	0.76	0.35-1.67			
	Female	26	48.7	46.2						
Primary site of	Rectum	15	46.3	42.2	0.75	0.86	0.34-2.17			
tumor	Colon	44	49.1	49.5						
Primary tumor nodal	Positive	44	54.5	73.7	0.13	0.51	0.22-1.20	Eliminated ¹		
status	Negative	15	NA	39.1						
Extrahepatic disease	Present	12	41.7	35.1	0.30	1.59	0.66-3.81			
	Absent	47	51.8	73.7						
DFI, year	<1	37	51.0	73.7	0.58	0.80	0.35-1.81			
	≥ 1	22	48.6	49.5						
No officiale	≥5	29	27.7	28.9	0.002	3.84	1.63-9.01	0.0003	5.77	2.22-14.99
NO. OF CLMS	< 5	30	69.6	NA						
Largest tumor size	≥.5	13	36.4	12.8	0.02	2.79	1.16-6.72	Eliminated ⁸		
before surgery, cm	< 5	46	52.1	73.7						
Burghamak	Yes	32	57.9	73.7	0.60	0.81	0.37-1.78			
Bevacizumab	No	27	37.8	44.4						
Cetuximab or	Yes	27	NA	NA	0.10	1.99	0.88-4.50	Eliminated ⁵		
panitumumab	No	32	58.3	73.7						
No. of chemotherapy	≥5	48	49.7	49.5	0.32	0.63	0.25-1.57			
cycles	< 5	11	46.0	39.1						
								Continued	d on r	next paa

Continued from previous

R0/R1

Factor		No. of	5-Year	Median OS (months)	Univariate Analysis			Multivariate Analysis		
		Patients OS (%	OS (%)		P	HR	95% CI	P	HR	95% CI
Presurgical serum	> 30	17	42.9	35.6	0.19	1.72	0.76-3.91			
CEA level, ng/mL	≤ 30	42	51.4	73.7						
RECIST 1.1	PD or SD	22	37.6	42.2	0.12	1.92	0.85-4.38	0.049	2.41	1.00-5.80
response*	PR	32	59.3	NA						
Morphological	Group 3	32	36.0	39.1	0.13	1.89	0.83-4.29	Eliminated ⁸		
response [†]	Group 1 or 2	26	63.4	73.7						
Magnetic field	3.0	21	NA	39.1	0.62	1.26	0.51-3.10			
strength, tesla	1.5	38	51.5	73.7						
Intratumoral fat in	Present	32	42.5	42.2	0.35	1.47	0.66-3.26	Eliminated ¹		
CLM (qualitative) [‡]	Absent	27	54.8	73.7						
Fat signal fraction of	≥ 12	13	NA	38.4	0.03	2.77	1.13-6.80	0.01	3.70	1.34-10.20
CLM, %1	< 12	46	55.1	73.7						
Pattern of fat deposition in CLM [‡]	Focal	9	15.6	38.4	0.06	2.48	0.98-6.26	Eliminated ¹		
	Diffuse or no fat	50	55.1	73.7						

Note-CEA = carcinoembryonic antigen; CI = confidence interval; CLMs = colorectal liver metastases; DFI = disease-free interval from fiagnosis of primary tumor to diagnosis of liver metastasis; HR = hazard ratio; NA = not available; OS = overall survival; PD = progressive disease; PR = partial response; RECIST = response evaluation criteria in solid tumors; SD = stable disease. *Response was not assessable in 5 patients because of lack of pre-chemotherapeutic computed tomography data. Group 3, heterogeneous attenuation and a thick, poorly defined tumor-liver interface; group 1, homogeneous hypoattenuation, with a thin, sharply defined tumor-liver interface; group 2, morphological response that could not be classified as either group 3 or 1. Intratumoral fat (qualitative), fat signal fraction, and pattern of fat deposition in CLM were separately evaluated by multivariate analysis. These items were eliminated upon multivariate analysis using a Cox proportional hazards model with stepwise backward selection.

Independent Predictors of Poor Overall Survival by Cox Proportional Hazard Model

- Metastases \geq 5 (HR, 5.77; 95% CI, 2.22–14.99; p = .0003)
- $FSF \ge 12\%$ (HR, 3.70; 95% CI, 1.34–10.20; p = .001)
- Age \geq 65 years (HR, 2.81; 95% CI, 1.18–6.71; p = .02)
- PD or SD by RECIST ver. 1.1 (HR, 2.41; 95% CI, 1.00–5.80; *p* = .049)

Factors Related to Intratumoral Fat Deposition Scatter Plots and Spearman's Rank Correlation

Discussion Where Do Lipid Signals Come From?

• In MRI, lipid resonance arises from relatively non-restricted molecules, the so-called mobile lipids.

Trends Biochem Sci 25: 357-362, 2000.

Cell membrane bilayers Membrane microdomains

Independent Predictors of Poor Recurrence-Free Survival by Cox Proportional Hazard Model

- Metastases \geq 5 (HR, 5.25; 95% CI, 2.52–10.93; p < .0001)
- Age \geq 65 years (HR, 3.194; 95% CI, 1.57–6.49; p = .001)
- PD or SD by RECIST ver. 1.1 (HR, 2.07; 95% CI, 1.04–4.12; *p* = .04)
- Morphologic response group 3 (HR, 1.97; 95% Cl, 1.01–3.86; *p* = .04)
- FSF \geq 12% was not significant predictors of poor RFS

Note—CI = confidence interval; HR = hazard ratio; PD = progressive disease; SD = stable disease

Largest tumor size (cm) Percent pathological tumor viability (%)

• Intratumoral fat deposition tended to be observed in larger and less viable CLMs but their correlations were weak.

Independent Predictors of Fat Signal Fraction $\geq 12\%$ by Multivariate Logistic Regression Analysis

- Tumor calcification (odds ratio [OR], 17.40; 95% CI, 2.13–143.00; p = .008)
- Tumor size \geq 5 cm (OR, 17.00; 95% CI, 2.38–121.00; p = .005)
- Cetuximab or panitumumab usage (OR, 8.87; 95% CI, 1.10–71.20; *p* = .04)

Intracellular lipid body

• The speculated mechanisms by which lipid signals appear in the tumor on MR spectroscopy (MRS) include chemotherapeutic effect, tumor necrosis, apoptosis, hypoxia, mitochondrial damage in tumor cells, macrophagemediated phagocytosis, and/or exposure of fibroblasts to environmental stress based.

> NMR Biomed 24: 592-611, 2011. Cancer Res 62: 1394-1400, 2002. Cell Death Differ 8: 219-224, 2001. Magn Reson Imaging 30: 848-853, 2012. Exp Gerontol 31: 669-686, 1996. J Cell Sci 125: 3485-3493, 2012.

Why Intratumoral Fat Deposition Is a Poor Prognostic Factor?

- Several studies based on MRS reported intratumoral lipid in various tumors as an early indicator of chemotherapy response. NMR Biomed 24: 592-611, 2011.
- However, in the present study, intratumoral lipid was a possible poor long-term prognostic factor.

Our Hypothesis:

- Total tumor volume might affect prognosis, as suggested by our findings of strong correlation between higher degree of intratumoral fat deposition and larger tumor size.
- Presence of hypoxic cancer cells might affect prognosis, because 2. hypoxia is thought to be a major cause of failure in cancer treatment; it is also speculated that hypoxia causes lipid accumulation in tumor cells. J Cell Sci 125: 3485-3493, 2012. Anticancer Res 10: 613-622, 1990. Cancer Manag Res 7: 253-264, 2015.

Limitations

- A retrospective study including a limited number of patients and relatively large number of parameters were evaluated.
- The chemotherapy regimens were not uniform.
- Patients who did not undergo CLM resection were not included.
- Special fat staining was not performed during histological analysis.
- Fat signal fraction may be biased because of many confounding factors including magnetic field strength, T1 bias, T2 relaxation, T2* decay, spectral complexity of the fat spectrum, J-coupling, noise bias, and eddy currents, which Dual-echo gradient-recalled MRI cannot correct.
- > To increase generalizability, further studies using a less biased technique such as chemical shift-encoded MRI or MR spectroscopy are needed.

Conclusions

- Intratumoral fat deposition was frequently identified in CLMs on MR images acquired after preoperative chemotherapy.
- The present findings demonstrated the possibility of a correlation between MRI detection of intratumoral fat in CLMs after preoperative chemotherapy and poor long-term prognosis.
- However, since the true clinical significance of this relationship was not clarified in this study, further studies are required.