# seram <br> Congreso <br> Nacional <br> <br> Outcomes and factors by risk group after prostate <br> <br> Outcomes and factors by risk group after prostate brachytherapy: Cohort study in 2316 patients brachytherapy: Cohort study in 2316 patients <br> Norihisa Katayama*, Katsumasa Nakamura*, Atsunori Yorozu ${ }^{\dagger}$, Takashi Kikuchi ${ }^{\dagger+}$, Taiki Magome**, Shiro SaitolIII, Takushi Dokiyal 

 Masanori Fukushimat†, Susumu Kanazawa**Department of Radiology, Okayama University Medical School
\#Department of Radiation Oncology, Hamamatsu University School of Medicine ${ }^{\dagger}$ Department of Radiation Oncology, National Hospital Organization Tokyo Medical Center
**Department of Radiological Sciences, Faculty of Health Sciences, Komazawa

## PURPOSE

To evaluate the biochemical freedom from failure (bFFF) by risk group and treatment modality and the predictive factors of bFFF by risk group in patients with prostate cancer (PCa) undergoing permanent seed implantation (PI) with or without external beam radiation therapy (EBRT) in a nationwide prospective cohort study in Japan (J-POPS) during the first 2 years.

## MATERIALS AND METHODS

| A total of 2,354 participants who were enrolled in the J-POPS study during the first 2 years (cohort 1) |  |  |  |
| :---: | :---: | :---: | :---: |
| The median follow-up period: 60.0 months (interquartile range, 58.7-60.9 months) |  |  |  |
| Loose I-125 seeds |  |  |  |
| The recommended prescribed dose PI monotherapy:144 Gy EBRT combination therapy: PI 100-110 Gy + EBRT 40-50 Gy |  |  |  |
| Rislougrostupgroup | Intermediate-risk group 1,114 cases | High-risk group 133 cases | Locally advanced 2 cases |
| $\begin{gathered} \text { PSA }<10 \\ \text { and } \end{gathered}$ | $\begin{aligned} & \text { PSA 10-20 } \\ & \text { and/or } \end{aligned}$ | $\begin{gathered} \text { PSA }>20 \\ \text { and/or } \end{gathered}$ |  |
| $\begin{gathered} \mathrm{GS} \leqq 6 \\ \text { and } \end{gathered}$ | $G S=7$ <br> and/or | $\begin{gathered} \text { GS } 8 \sim 10 \\ \text { and/or } \end{gathered}$ | T3b-T4 |
| $\mathrm{T} \leqq 2 \mathrm{a}$ | T2b-T2c | T3a |  |


| Eaxsedine characteristicsnof matien ${ }^{\text {ES }}$ |  |  |  | Minimum | Media | Maximum | Missin |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 45 | 69 | 89 | 0 |
| Low-risk group | 1,02 | 67.3 | 6.5 | 45 | 68 | 89 | 0 |
| Intermediate-risk group | 1,11 | 68.6 | 6.2 | 51 | 69 | 88 | 0 |
| High-risk groupPretreatment PSA (ng/ml)* | 133 | 69.8 | 6.2 | 55 | 71 | 84 | 0 |
|  | $\stackrel{2,29}{8}$ | 8.0 | 4.1 | 1.6 | 6.8 | 42.0 | 18 |
| Low-risk group | 1,02 | 6.2 | 1.7 | 1.6 | 6.0 | 9.98 | 0 |
| Intermediate-risk group | 1,11 |  |  |  |  |  |  |
| High-risk group <br> Percent positive biopsies | 132 | 14.6 | 9.0 | 3.7 | 11.4 | 42.0 | 1 |
|  | 2,19 | 27.5 | 19.1 | 3.9 | 21.4 | 100 | 20 |
| Low-risk group | 975 | 22.2 | 14.9 | 4.2 | 16. | 100 | 53 |
| Intermediate-risk group | 1,05 | 30.7 | 19.8 | 3.9 | 25 | 100 | 56 |
| High-risk group | 131 | 39.1 | 27.8 | 7.1 | 33.3 | 100 | 2 |
| Prostate volume (ml) ${ }^{+}$ | 2,31 | 25.9 | 8.2 | 7.0 | 25.2 | 71.0 | 0 |
| Low-risk group | $\stackrel{1,02}{8}$ | 26.9 | 8.1 | 7.3 | 26.2 | 60.9 | 0 |
| Intermediate-risk group | 1,11 | 25.4 | 8.3 |  | 24.8 |  |  |
| High-risk group | 133 | 22.9 | 7.8 | 7.0 | 22.2 | 45.8 | 0 |
| Implanted seed number | 2,31 6 1 | 68.3 | 16.6 | 25 | 69 | 120 | 0 |
| Low-risk group | 1,02 8 | 73.8 | 14.5 | 26 | 75 | 120 | 0 |
| Intermediate-risk group | $\stackrel{1,11}{4}$ | 65.0 | 16.8 | 28 | 65 | 118 | 0 |
| High-risk groupTotal activity (MBq) | 133 | 53.2 | 13.0 | 25 | 50 | 99 | 0 |
|  | 2,31 | 929.3 | 293. | 244.8 | 903.9 | 1,836 | 0 |
| Low-risk group | ${ }_{1,02}^{8}$ | 1,000.9 | 267. 9 | 254.5 | 982.5 | 1,836 | 0 |
| Intermediate-risk grquidw-risk graupFactorsInter |  |  |  |  |  |  |  |
| High-risk group | \% 133 | 70 f. 6 |  | ${ }_{265.5}$ | $\mathrm{n}_{640}$ | \% $1,514.7$ | \% |
| Pemotatess 100 (\%) 1,02 | 2,30 100 108 | 93.9 241 |  | $21.6^{66.3}$ | ${ }_{15} 95$ | $11.3^{100}{ }_{1,30}$ | 5126 |
|  | 6,02 | 9308 | 5.3 | $54.6^{33.6}$ | $22^{94.7}$ | $16.5{ }^{100}{ }_{640}^{9}$ | 27.7 |
|  | ${ }^{4} 10$ | 265 |  | 23.8 | 14 | $10.5 \quad 281$ | 12.2 |
|  | ${ }_{9}$ | $94{ }^{\text {a }}$ | 5.3 | ${ }^{0} 56.3$ | ${ }^{63} 5.6$ | $47.4_{100}{ }^{63}$ | $25_{5}$ |
| Milith-risk groyntag | 932 | 94.4 | 4.4 | 078.4 | ${ }^{195} 5$ | 14.300.019 | ${ }_{1} 8$ |
| $\begin{array}{lll} \text { Clinical stage: 1 stage } \\ \text { Prostate D90 (\%) } & 862 & 8 \end{array}$ | 84, ${ }^{2} \mathbf{4}$ | 112.0 | 15.5 | ${ }_{67}{ }^{40.1}$ |  | $45.9{ }^{191.6} 1.69$ | 73? 4 |
| Treaw-risk group 164 | ${ }_{16}^{16}$. $0^{2}$ | 110.9 203 |  | 18.30.1 |  | $23.353 .2{ }^{3}{ }^{3}$ | 17.5 |
|  | P, 10 |  |  |  |  |  | 5.3 |
|  | 0, | 11359 | 15.6 | 5.054 .5 | $16^{1} 3.7$ | 7.5191 .666 | $2{ }_{5}$ |
| TRTR h -risk group 0 | Q32 | 119.8 | 15.2 | 075.5 | 1193.3 | 12.961.416 | 0.7 |
|  | 2,30 0 0 | 178.9 | 28.4 | ${ }_{0}^{0} 59.0$ | ${ }_{0} 979.4$ | $\begin{aligned} & 0289.8 \\ & 0 \\ & 0 \end{aligned}$ | 0.1 |
| Clinical Istage: Now-risk group | 1,02 |  |  |  |  |  |  |
| No ${ }^{\text {Low-risk group }} 1028$ | 104 | ${ }^{179} 14$ | 25.6 | $100^{59.0}$ | 1330.0 | $108^{888.2,29}$ | 99.4 |
| NXtermediate-risk group | +10 | 184.5 | 28.8 |  | Q87.4 | 0289.814 | 056 |
| Clinipat-risktapeip M | 133 | 199.1 | 25.1 | 85.5 | 203.9 | 255.9 | 0 |
| Stageatment PSA was measured before the latest biops |  |  |  |  |  |  |  |
| TRF6state volume was mea83ired | P68im | pantaqiq |  | 100 | 133 | $100 \quad \begin{aligned} & \text { 2,29 } \\ & 7\end{aligned}$ | 99.3 |
| Treatment modalities | 0 | 0 |  | 0 | 0 | 16 | 0.7 |
|  | 98 |  |  |  |  | 17.31 |  |


 hažards model was ${ }^{4}$ \& 4 so ussed to ${ }^{6}$ Pdentify ${ }^{5}$ HFe facters associated with the bFFF.


## RESULTS


${ }^{+}$Translational Research Informatics Center
IIIIDepartment of Urology, National Hospital Organization Tokyo Medical Center
${ }^{\text {ald }}$ Department of Radiology, Kyoundo Hospital, Tokyo, Japan

| * bFFF by treatment modality |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C 1.0 |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| 0.0 |  |  |  |  |  |  |  |
| Analysis of factors associated with bFFF |  |  |  |  |  |  |  |
| Factors |  | $\begin{array}{cc}  & \text { Univariate analysis } \\ \text { HR } & 95 \% \mathrm{CI} \\ \hline \end{array}$ |  |  | Multivariate analysis |  |  |
|  |  | HR | 95\% CI |  |
| All cases |  |  |  |  |  |  |  |  |  |  |
| Age |  | 0.960 | 0.936-0.985 | 0.0016* | 0.957 | 0.932-0.983 | 0.0012* |
| Pretreatment PSA |  | 1.040 | 1.007-1.074 | 0.0161* | 1.019 | 0.985-1.054 | 0.2830 |
|  |  | - | - | <0.0001* | - | - | 0.0030* |
| $\begin{aligned} & 6 \text { or less } \\ & 7(3+4) \end{aligned}$ |  | 1.353 | Reference <br> 0.904-2.025 | 0.1412 |  | Reference $0.826-1.925$ |  |
| \% Positive biopsies $\quad 7(4+3), 8$ to 10 |  | 2.460 | 1.649-3.670 | <0.0001* | 2.149 | 1.380-3.347 | 0.0007* |
|  |  | 1.016 | 1.009-1.024 | <0.0001* | 1.012 | 1.004-1.020 | 0.0026* |
| $\begin{array}{llllllll}\text { Prostate V100 (\%) } & 0.968 & 0.943-0.995 & 0.0187 & 0.970 & 0.942-0.998 & 0.0368^{*}\end{array}$ |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| Age |  | 0.928 | 0.891-0.967 | 0.0004* | 0.926 | 0.889-0.964 | 0.0002* |
| Pretreatment PSA |  | 1.219 | 1.044-1.423 | 0.0123* | 1.246 | 1.069-1.452 | 0.0048* |
| Prostate V100 (\%) |  | 0.983 | 0.967-0.999 | 0.0397* | - | - | - |
|  |  | 0.944 | 0.907-0.982 | 0.0044* | 0.936 | 0.899-0.974 | 0.0012* |
| Intermediate-risk groupGleason score |  |  |  |  |  |  |  |
|  |  | - | - | 0.0005* | - | - | 0.0005* |
| 6 or less |  |  | Reference |  |  | Reference |  |
|  | 7 (3+4) | 2.149 | 0.958-4.821 | 0.0634 | 2.187 | 0.919-5.205 | 0.0769 |
| \% Positive biopsies $7(4+3)$ |  | 4.258 | 1.875-9.671 | 0.0005* | 4.538 | 1.879-10.960 | 0.0008* |
|  |  | 1.014 | 1.003-1.024 | 0.0110* | 1.014 | 1.003-1.025 | 0.0120* |
| Hormonal treatment | $\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$ | 0.560 | $\begin{aligned} & 0.353-0.886 \\ & \text { Reference } \end{aligned}$ | 0.0133* | 0.470 | $\begin{aligned} & 0.290-0.762 \\ & \text { Reference } \end{aligned}$ | 0.0022* |
| High-risk group Gleason score |  |  |  |  |  |  |  |
|  |  | - | - | 0.0035* | - | - | 0.0329* |
| 7 or less <br> 8 |  |  | Reference |  |  | Reference |  |
|  |  | 0.503 | 0.084-3.010 | 0.4514 | 0.959 | 0.1455-6.317 | 0.9651 |
| \% Positive biopsies ${ }^{9}$ |  | 5.544 | 1.386-22.170 | 0.0154* | 5.553 | 1.201-25.670 | 0.0282* |
|  |  | 1.036 | 1.015-1.057 | 0.0007* | 1.028 | 1.006-1.051 | 0.0120* |
| Prostate D90 (\%) ${ }^{\text {*Significant risk factor }}$ |  | 1.041 | 1.003-1.081 | 0.0327* | 1.047 | 0.9991-1.097 | 0.0545 |
| ${ }^{*}$ Significant risk factor <br> \#Prostate D90 is the collinearity factor of prostate V100; therefore, prostate D90 is excluded in the multivariate analysis |  |  |  |  |  |  |  |

## DISCUSSION

Our outcome in high-risk patients was relatively favorable as compared with the outcomes in the other studies [1-5].
We assume that this may be attributable to the higher rate of high-risk patients who received HT and the lower rate of patients with stage T3+ in all high-risk patients.
*The factor associated with bFFF: Younger age $\rightarrow$ Low-risk group
The relationship between younger age and more aggressive clinical behavior of PCa has been previously documented, and there is evidence that youngage PCa has several biological and genetic features, distinct from elderlyonset PCa [6, 7]

Because of the low BED and the low rate of patients who received HT in lowrisk patients, aggressive PCa may not have been controlled.

* The factor associated with bFFF: Lower prostate V100 and D90 group

Because of the low rate of patients who received HT or EBRT in low-risk patients,
the prostate dose of PI may have had a strong effect on the local control.

* The factor associated with bFFF:

Higher percent positive biopsies $\rightarrow$ Intermediate-risk and high-risk group Many studies reported that higher percent positive biopsies has been correlated with a higher likelihood of extracapsular extension [8-12].

Because of the lower percent positive biopsies, the probably low rate of extracapsular extension, and the low standard deviation of percent positive biopsies in low-risk patients, the percent positive biopsies may have not been a factor associated with biochemical failure.

1) Riaz N et al: Int J Radiat Oncol Biol Phys 84: 707-711, 2012
2) Zimmermann JS et al: J Contemp Brachytherapy 10: 297-305, 2018
3) Kauffmann G et al: Urol Oncol 36: 471, 2018
4) Ohashi T et al: Radiat Oncol 9: 13, 2014
5) Koontz BF et al: Brachytherapy 8: 191-196, 2009
6) Hamstra DA et al: Int J Radiat Oncol Biol Phys 81: 1293-1301, 2011
7) Hussein S et al: J Clin Pathol 68: 511-515, 2015
8) Lotan Y et al: J Urol 171: 2209-2214, 2004
9) D'Amico AV et al: J Clin Oncol 18: 1164-1172, 2000
10) Bismar TA et al: Am J Surg Pathol 27: 432-440, 2003
11) Grossfeld GD et al: J Urol 165 : $851-856,2001$
12) Grossfeld GD et al: J Urol 165: 851-856, 2001

## CONCLUSIONS

*PI with or without EBRT resulted in excellent short-term biochemical outcomes at all risk groups, especially at high-risk group in Japanese prostate cancer patients.
*Younger age, higher pretreatment PSA, and lower prostate V100 - D90 in lowrisk patients; higher GS, higher percent positive biopsies, and no HT in
intermediate-risk patients; and higher GS and higher percent positive biopsies

