

# Difusión cardíaca: Técnica y aplicaciones clínicas.

Tipo: Presentación Electrónica Educativa

Autores: Jordi Broncano Cabrero, Antonio Luna Alcalá, Javier Sánchez González, Pilar Caro Mateo

# **Objetivos Docentes**

Objetivos:

- 1. Analizar los ajustes técnicos necesarios para la realización de imagen potenciada en difusión en el corazón.
- 2. Revisar las potenciales aplicaciones clínicas de la difusión cardíaca.

#### Imágenes en esta sección:



# DIFUSIÓN CARDÍACA: TÉCNICA Y APLICACIONES CLÍNICAS

Broncano J, MD<sup>1</sup>; Luna A, MD<sup>2</sup>; Sanchez – Gonzalez J, PhD<sup>3</sup>; Caro Mateo P

<sup>1</sup>Hospital Cruz Roja y San Juan de Dios. Health Time Group. Córdoba (Spain) <sup>2</sup>Clínica Las Nieves. Health Time Group. Jaen (Spain) <sup>3</sup>Philips Healthcare. Madrid (Spain) Dadisa. Health Time Group (Spain)

Fig. 1: Portada

# Revisión del tema

# 1. Introducción

Gracias a los avances recientes en la imagen funcional y molecular las secuencias de RM han consolidado una mejora sustancial en la caracterización de tejidos normales y patológicos. La difusión por RM (*Diffusion Weighted Imaging; DWI*) se ha convertido en una herramienta poderosa desde el punto de vista diagnóstico, no sólo para la diferenciación entre lesiones malginas y benignas, sino como biomarcador oncológico con importantes implicaciones pronósticas en diferentes partes de nuestra anatomía.

# 2. DWI: Técnica y análisis

# 2.1. Técnica de DWI y secuencia propuesta

La DWI evalúa el movimiento browniano de las moléculas de agua en los tejidos biológicos (a 37°C), habiéndose relacionado con la celularidad y arquitectura tisular. Está basado en una secuencia *Turbo Spin Echo* (TSE) *single - shot* modificada (*Stejskal – Tanner;* figura 1). Valora la pérdida de la intensidad de señal generada por diferentes gradientes (*Motion Probe Gradients; MPG*) alrededor de un pulso de radiofrecuencia de 180°[1].

Por tanto, cuanto mayor es la caída de señal mayor es la potenciación en difusión. El valor b mide el grado de potenciación en difusión (figura 1). De tal forma, si queremos incrementar la potenciación en difusión debemos aumentar el área bajo la curva de los MPG, ya sea por un incremento en la altura (G $\delta$ ) o en el tiempo de los mismos ( $\Delta$ ).

Gracias a los avances técnicos, no sólo en el hardware sino también en el software y técnicas de adquisición se ha podido implementar la DWI en la valoración del tórax en general y del corazón en particular. La técnica de imagen ecoplanar (*Echo Plannar Imaging ; EPI*) permite adquirir todo el espacio K en un tiempo de repetición. El mayor inconveniente es la distorsión geométrica derivada de inhomogeneidades en el campo magnético (B0) [2]. Las técnicas de adquisición en paralelo permiten, en virtud de una disminución del tren de ecos, reducir el tiempo de adquisición. Ambas técnicas son de gran importancia para la aplicación de la DWI en la imagen cardíaca [3].

El movimiento macroscópico, producido tanto por la respiración como por el latido cardíaco, son críticos en la aplicación de la DWI en el tórax y constituyen un problema potencial, debido a la destrucción de la señal de difusión subsidiaria. La DWI en el tórax precisa la aplicación de sincronización respiratoria, preferida sobre técnicas de adquisición en apnea (figura 2). Para evitar artefactos de latido, la sincronización cardíaca puede resultar útil [2]. A diferencia de la adquisición torácica, los autores recomiendan en el corazón una adquisición en apnea con sincronización cardíaca en diástole.

#### 2.2 DWI análisis, interpretación y artefactos

Existen métodos monoexponenciales y no monoexponenciales de análisis de la difusión (movimiento incoherente intravóxel – *IVIM, Kurtosis –DKI, streched difusión*) [4]. El análisis puede realizarse de forma cualitativa o cuantitativa. El coeficiente de difusión aparente (ADC) refleja la caída de la intensidad de señal entre el gradiente b0 (inicial) y el gradiente b final de la potenciación en difusión (figura 3). Cuanto mayor número de valores b introduzcamos, más exacto será el parámetro obtenido [5].

Cuando una lesión o tejido muestra hiperintensidad mantenida conforme incremente la potenciación en difusión, ello traduce una escasa pérdida de señal y, por tanto, una hipointensidad de señal en el mapa de ADC, reflejando una restricción del movimiento de las moléculas de agua en el mismo [5]. En consecuencia, en función del comportamiento de la caída de la señal en difusión, de la intensidad de señal en gradiente b alto y del mapa de ADC se aprecian unos patrones característicos (figura 4) [6]. Existen dos excepciones:

- 1. T2 "*shine through*": debido a la alta intensidad de señal T2 de la lesión o tejido vivo. La obtención del mapa de ADC y su valor es útil para la diferenciación de lesiones restrictivas (<u>figura 4</u>) [7, 8].
- 2. T2 "*dark through*": producido por baja intensidad de señal T2 del tejido por fibrosis, calcificación o productos de degradación de la hemoglobina (<u>figura 4</u>) [7, 8].

Por tanto, la intensidad de señal T2 de los tejidos debe ser el **PUNTO DE PARTIDA** para el análisis del comportamiento de las lesiones y/o tejidos vivos en difusión. Además, el cálculo del mapa de ADC permite distinguir posibles factores de confusión.

El análisis cuantitativo, basado en la obtención del ADC, o bien semicuantitativo centrado en la obtención de ratios de ADC (ADC miocardio/ADC músculo pectoral) o bien basados en la intensidad de señal del tejido miocárdico o de la lesión en gradientes b altos respecto a tejidos de referencia (músculo pectoral, miocardio no afecto o líquido cefalorraquídeo) [5].

Sin embargo, el modelo monoexponencial (basado en el ADC) asume que las moléculas de agua difunden de forma libre en los tejidos. Esta asunción no es cierta (unión a macromoléculas, presencia de barreras celulares, irregularidad del espacio intersticial, etc.)[8]. El IVIM permite una mejor valoración de la señal de difusión tejidos vivos, especialmente en órganos bien vascularizados (<u>figura 3</u>) [8]. Distingue dos componentes diferenciados:

- 1. Caída rápida de la señal de DWI à producido por el movimiento de las moléculas de agua en el interior de los capilares. Se obtiene la fracción de perfusión (f).
- 2. Caída lenta de la señal DWI à Reflejo de la difusión real de las moléculas de agua en el tejido vivo. Se evalúa a partir del coeficiente de difusión (D).

Por tanto, para reducir las anomalías en la microperfusión del tejido miocárdico, los autores recomiendan la adquisición de un valor b bajo y otro alto en la generación del mapa de ADC (figura 1).

Las limitaciones del STIR en la detección del edema miocárdico son: (1) baja relación señal – ruido, (2) inhomogeneidad de señal B1, (3) calidad de imagen inconsistente y (4) artefactos por flujo lento subendocárdicos. La difusión se ha sugerido como una alternativa a la secuencia T2 – STIR en la valoración del edema miocárdico, especialmente en el contexto de cardiopatías isquémicas y miocardiopatías inflamatorias [9, 10]. Los posibles artefactos de la DWI cardíaca son: (1) distorsión geométrica, (2) artefactos de saturación grasa y (3) movimiento (<u>figura 5</u>).

# 3. Aplicaciones clínicas de la DWI cardíaca

# 3.1. DWI y cardiopatía isquémica

Constituye la **primera causa de mortalidad** en EE.UU con una prevalente estimada de 8,5 millones de infartos de miocardio (IM) [11]. El IM se define como la muerte miocitaria secundaria a la isquemia producida por un flujo sanguíneo inadecuado al miocardio y que sobrepasa los mecanismos de reparación celular propios del tejido (<u>figura 6</u>) [12, 13]. Es más común entre los 40 – 65 años y es más letal en mujeres [14, 15].

La **RM cardíaca** es la técnica de elección para la valoración de la función cardíaca y viabilidad miocárdica. El realce tardío post-gadolinio (LGE) indica la ausencia de miocitos viables de forma aguda (necrosis) o crónica (fibrosis), lo que conduce a un incremente del volumen de distribución y una reducción del lavado del contraste en dichas áreas (daño miocárdico irreversible) [10]. Permite diferenciar etiología isquémica (subendocárdio à transmural) de no isquémica, valorar viabilidad y cuantificación de la escara (factor pronóstico) así como detección de trombo intracavitario (figura 6) [15].

El **edema miocárdico** es debido a un incremento del contenido de agua en el tejido debido a alteraciones en la Na<sup>+</sup>/K<sup>+</sup> ATPasa, aumento de la presión osmótica celular y, en última instancia rotura de las membranas celulares y capilares con paso de agua al espacio intersticial (<u>figura 6 y 7</u>) [16]. Constituye un marcador de daño miocárdico isquémico agudo (**daño reversible;** <u>figura 7</u>). Para ello se utiliza una secuencia sangre negra con triple inversión recuperación, donde las áreas edematosas aparecen hiperintensas. El <u>miss - match</u> entre miocardio edematoso y muerto constituye el miocardio en riesgo (<u>figura 7</u>) [10, 15, 17]. Se han hecho varias aproximaciones para la valoración del edema miocárdico isquémico con DWI.

# 3.1.1 DWI con valor b bajo e IM

Para ello se ha aplicado una secuencia de DWI con valor b bajo (50 s/mm<sup>2</sup>) sincronizada en diástole

media y con navegación respiratoria. La frecuencia cardíaca debe ser < 70 latidos por minuto (lpm) para evitar artefactos de movimiento [10].

La DWI resultó mejor que el T2 - STIR para la detección de edema miocárdico debido a una mayor supresión del pool sanguíneo y una mayor intensidad de señal de las áreas edematosas en pacientes con IM agudo (100% DWI vs. 67% T2 - STIR). Además, mostró mayor sensibilidad (S: 83,6% vs. 60,6%, para DWI y STIR, respectivamente) y valor predictivo negativo (VPN: 60 vs. 39,1% para DWI y T2 - STIR, respectivamente) para la detección de edema miocárdico con igual especificidad y valor predictivo positivo (E: 90 y VPP: 96%, respectivamente). Las áreas de edema miocárdico detectadas fueron mayores y existía una mayor correlación entre el edema y la necrosis miocárdica con DWI (r=0,61; p<0,001) que con STIR (r=0,39; p<0,001) (figura 8) [10].Al contrario que en T2 - STIR, tampoco existía dependencia de la localización, identificando hasta 1/3 más de IM que no mostraban edema en T2 – STIR (figura 8) [10].

# **3.1.2 DWI con alto valor b e IM**

Sin embargo, con valor b bajo (50 s/mm<sup>2</sup>) parte de la alteración de la intensidad de señal apreciada podría ser debido a efecto T2 del tejido y no propiamente a edema miocárdico (figura 9) [10]. Laissy y colaboradores aplicaron varios valores b para la detección de edema miocárdico en pacientes con IM y obtuvieron que el mejor valor b para su identificación era 300 s/mm<sup>2</sup>. Utilizaron una secuencia de DWI con valor b alto (> 100 – 150 s/mm<sup>2</sup>) adquiriendo todo el corazón, sincronizada en telediástole y en apnea [4, 18]. Obtuvieron diferencias significativas en los valores ADC de IM agudos, subagudos y crónicos respecto al grupo control, agudo vs. Crónico y subagudo vs. Crónico [4, 18].

# 3.1.3 Secuencias tensor de difusión (DTI) e IM

Se necesitan, al menos, la adquisición en 6 direcciones diferentes en la secuencia de DWI para poder obtener la información de un tensor de difusión. Su aplicación en el corazón permite una mejor aproximación de la microestructura cardíaca, al poder valorar la conformación tridimensional de las fibras cardíacas, determinante en la torsión, estrés y tensión cardíaca. Permite separar las diferentes capas miofibrilares cardíacas (<u>figura 10</u>) [2].

Tras un insulto isquémico agudo, con una mediana de tiempo de 26 días, la DTI puede observar una alteración de la estructura cardíaca, con incremento significativo de la media de ADC y una reducción de la fracción de anisotropía. Es objeto de investigación la monitorización del remodelado cardíaco tras un infarto hiperagudo mediante este método de imagen [4, 10, 18].

# 3.2 Miocarditis aguda

Se define como una inflamación del tejido miocárdico que puede ser ocasionado por varias etiologías (figura 11). Aunque de prevalencia desconocida se ha identificado en hasta el 12% de las autopsias de jóvenes con muerte súbita [19]. Gracias a la aplicación de la RM cardíaca se está viendo que es un problema mucho más común de lo que se pensaba. La biopsia endomiocárdica (*Criteros de Dallas*) únicamente está indicada ante la sospecha de una miocarditis fulminante o de células gigantes. Entre los principales problemas se incluye el error de muestreo, la baja reproducibilidad y el riesgo de complicaciones potencialmente fatales (perforación, taponamiento cardíaco: 0,1 - 0,5%) [19]. Fisiopatológicamente se distinguen tres fases [20]:

- 1. <u>Fase viral aguda (corta duración)</u>: desde la introducción del virus y replicación hasta el daño tisular miocitario bien de forma directa o por interacción del sistema inmune.
- 2. <u>Fase inmune subaguda:</u> para eliminar el virus y desactivarse cuando sea apropiado. Al principio se activa la inmunidad innata y posteriormente la adquirida (expansión de linfocitos T y B).
- 3. *Fase miocarditis crónica:* Persistencia de la replicación viral o de la activación de la respuesta

inmune conduce a un remodelado del citoesqueleto, activación de metaloproteinasas y de factores profibróticos à miocardipatía dilatada.

Tanto la ecocardiografía, la analítica y el electrocardiograma dan información inespecífica y, ocasionalmente, puede simular un IM. Se han propuesto unos criterios diagnósticos basados por RM que se centran en tres aspectos fundamentales del proceso fisiopatológico (Lake Louis Consensus; figura 12) [19, 21]:

- 1. **EDEMA**: Infiltración inflamatoria del tejido miocárdico.
- 2. **<u>HIPEREMIA</u>**: Aumento de la perfusión y permeabilidad capilar.
- 3. **FIBROSIS**: necrosis miocitaria y fibrosis.

La RM cardíaca presenta un rendimiento diagnóstico excelente (S, E, VPP, VPN y precisión diagnóstica de 67%, 91%, 91%, 69% y 78%, respectivamente) [19]. Además permite identificar otros hallazgos incidentales o asociados durante la realización del estudio (figura 13).

# 3.2.1 DWI con bajo valor b (50 s/mm<sup>2</sup>) y miocarditis

Potet y cols utilizaron una secuencia DWI con b=  $50 \text{ s/mm}^2$  con un corte orientado en cuatro cámaras, sincronización cardíaca y respiratoria obteniendo buenos resultados en la valoración regional y global del edema miocárdico (figura 14) [22].

Cualitativamente permitía una mejor identificación del edema miocárdico respecto al T2 - STIR (S, E y precisión diagnóstica 92% vs. 54%; 95% vs. 70% y 100% vs. 100%, para DWI y T2 - STIR, respectivamente). Además, al realizar un análisis cuantitativo obtenía mayor ratio de intensidad de señal con DWI que con T2 – STIR [22].

# 3.2.2 DWI con alto valor b (300 s/mm<sup>2</sup>) y miocarditis

Con valores b bajos (< 100 s/mm<sup>2</sup>) sabemos que existe una sobreestimación de las zonas edematosas debido al efecto T2 – perfusión [23]. Además, en la fisiopatología de la miocarditis existe un incremento de la permeabilidad capilar en áreas de miocardio inflamado [20]. Por ello, se puede incrementar la especificidad para el edema miocárdico minimizando el efecto del componente perfusional en la señal de DWI (figura 15). Esto se puede conseguir elevando el valor b (> 100 s/mm<sup>2</sup>) o bien reduciendo el tiempo de eco de la secuencia [2].

Con valores b altos (300 s/mm<sup>2</sup>) las áreas persistentemente hiperintensas en dicho gradiente probablemente correspondan con tejido miocárdico edematoso. Además, Broncano y cols demostraron que es factible su aplicación cubriendo todo el corazón, con similar rendimiento diagnóstico y mejor reproducibilidad que el T2 - STIR en miocarditis aguda (ECR meeting; 2015; <u>figura 16</u>).

# 3.3 Pericarditis aguda

Se define como una inflamación del miocardio [24]. Ocasiona dolor torácico que varía y empeora con los cambios de posición. Generalmente es secundaria a una infección viral, aunque también existen otras etiologías (<u>figuras 17</u> y <u>18</u>). Fisiopatológicamente se puede diferenciar en [25]:

- 1. *Pericarditis aguda*: leve derrame pericárdico con engrosamiento y realce.
- <u>Pericarditis crónica recidivante</u>: Recurrencia tras el tratamiento. El derrame pericárdico puede ser mayor. También puede ser fibrótico y estar calcificado.

3. <u>*Pericarditis crónica*</u>: Habitualmente es un diagnóstico clínico. El pericardio está engrosado y calcificado.

En DWI se puede ver un pericardio que se atenua o se mantiene hiperintenso en gradiente b alto y también en el mapa de ADC (efecto T2 "*shine Through*") indicando un origen inflamatorio – benigno. La presencia de sustancias paramagnéticas (calcificación) o fibrosis se puede manifestar como zonas de efecto T2 "*dark through*".

# 3.4 Contusión cardíaca (Blunt Trauma)

La *contusión miocárdica subclínica* es la forma más común pero de prevalencia desconocida debido a la ausencia de criterios diagnósticos definidos. Se produce por un traumatismo cerrado directo sobre el tórax o bien por deceleración brusca con impacto del corazón sobre el esternón (accidentes de circulación, caídas o aplastamientos). Si los pacientes permanecen hemodinámicamente estables no hay alteraciones electrocardiográficas, se recuperan sin secuelas. Ocasionalmente desencadenan arritmias malignas o shock cardiogénico [26].

Se produce hemorragia intramiocárdica, edema y necrosis localizada. Por tanto, la detección de edema post-traumático puede sugerir el diagnóstico de contusión cardíaca en el contexto clínico adecuado [26]. La DWI constituye una técnica sensible, robusta y reproducible para la valoración de edema miocárdico, especialmente en zonas tan complejas como la pared libre del ventrículo derecho (VD; <u>figura 19</u>).

La *contusión cardíaca clínicamente significativa* se produce cuando existe disfunción miocárdica establecida (hipotensión, congestión pulmonar, hipoperfusión, arritmias malignas y trastornos de la conducción). Es secundario a compresión precordial directa, deceleración o compresión cardíacas lesionando, más frecuentemente la pared libre del VD, más proclive a la rotura. Suele manifestarse con hematoma, anomalías en la contractilidad, hipoquinesia y arritmias, que habitualmente resuelven en 24 horas. Raramente se producen secuelas cardíacas como aneurismas ventriculares o fibrosis [26].

# 3.5 DWI y evaluación de masas cardíacas

La difusión permite evaluar la ultraestructura y organización de masas y pseudomasas cardíaca (Figura 20). Además, en otras regiones anatómicas el ADC constituye un biomarcador de respuesta terapéutica con implicaciones pronósticas [2]. La RM morfológica es la técnica de elección en la valoración de tumores cardíacos debido a la capacidad de caracterización tisular, definición de la extensión y de la planificación quirúrgica [27–29]. La DWI puede obviar la necesidad de administración de contraste endovenoso para la diferenciación de los componentes quístico y sólido de la lesión. La adición de secuencias funcionales, como DWI y DCE – MR no sólo resulta atractiva para la diferenciación entre un origen benigno y maligno, sino también para la monitorización terapéutica [2]. Existe poca experiencia en la aplicación de DWI en la valoración de masas cardíacas. En la experiencia de los autores, resulta muy útil en dicha valoración como vamos a exponer con ejemplos detallados.

# 3.5.1 Pseudomasas cardíacas.

# <u>A. Trombo intracavitario</u>

Constituye la causa más frecuente de masa cardíaca [28]. Su localización más común es en la aurícula izquierda, en casos de fibrilación auricular o de disfunción valvular severa. También se pueden observar en ventrículos con disfunción sistólica severa, como en casos de cardiopatía isquémica asociados, frecuentemente, a aneurismas ventriculares [28]. En función de sus características por RM se puede establecer una cronología del mismo. Habitualmente son no restrictivos en difusión (atenuación de la señal con mayores gradientes b; hiperintensos en el mapa de ADC). En la experiencia de los autores, un trombo organizado (fibrosis; realce en LGE) puede presentar un efecto T2 "dark through" en secuencias de difusión por la presencia de productos de degradación de la hemoglobina y fibrosis (figura 21 y figura

#### 22; video trombo auricular).

#### **B.** Quistes pericárdicos

Estructura quística congénita benigna de contenido líquido. Habitualmente se localiza en el seno cardiofrénico derecho [27]. Debido a que el líquido contenido puede ser hiperprotéico, la TC tiene limitaciones en la caracterización del mismo. La RM morfológica y, sobre todo, la DWI permiten una adecuada identificación del componente quístico de la lesión. Pueden ser iso/hipointensos en T1, hiperintensos en T2 y sin captación de gadolinio. En DWI pueden mostrar un comportamiento no restrictivo (hipointensos en gradiente b alto/hiperintensos en ADC) o bien un efecto T2 "*shine through*" (figura 23).

#### C. Necrosis caseosa del anillo de la válvula mitral.

Es una variante de la calcificación del anillo valvular mitral (1%), habitualmente afectando a la porción posterior y surco auriculoventricular del anillo mitral [29]. Presenta un contenido mixto de ácidos grasos, colesterol y un infiltrado inflamatorio crónico rodeado de una carcasa fibrocalficada. Son hiperintensos en T1 y T2 en relación con necrosis licuefactiva y muestran un realce periférico en LGE debido a la corteza fibrosa. La presencia de necrosis caseosa origina un centro hipointenso ("dark core") [27]. En DWI observa un efecto T2 "*dark through*" reflejo tanto de la necrosis caseosa como de la calcificación (figura 24; video necrosis caseoas anillo valvular mitral).

#### 3.5.2 Masas cardíacas benignas

Diagnóstico diferencial tumores benignos cardíacos (figura 25 y 26).

El mixoma constituye el tumor cardíaco más frecuente [28]. Habitualmente van a presentar un comportamiento no restrictivo en difusión. Sin embargo, en la experiencia de los autores, tanto la recidiva local como ante la presencia de fibrosis (LGE positivo) intralesional el comportamiento en DWI varía mostrando restricción (Hiperintenso en gradiente b alto; hipointenso en mapa de ADC) reflejando una heterogeneidad tisular (Figura 27; video prolapso mixoma auricular izquierdo).

#### 3.5.3. Masas cardíacas malignas

Diagnóstico diferencial tumores malignos cardíacos (figura 28).

La masa cardíaca tumoral maligna más frecuente es la metástasis cardíaca (figuras 29 y 30) [28]. El valor de las técnicas funcionales por RM no sólo radica en la caracterización tisular, diferenciación solidoquística sino, además, en la obtención de diferentes parámetros quantitativos válidos para la monitorización terapéutica.

#### 3.6 Monitorización terapéutica y DWI cardíaca

#### 3.6.1. Edema miocárdico persistente en miocarditis

Habitualmente las miocarditis se resuelven en el transcurso de semanas o meses. Sin embargo la progresión de la enfermedad a miocarditis crónica y miocardiopatía dilatada secundaria se produce en hasta el 21% de los pacientes [30]. Es causado por un daño viral directo (replicación viral mantenida) o bien un inflamación crónica autoinmune [20]. La RM cardíaca permite la identificación del **edema miocárdico persistente**, en estos pacientes, evitando así la consecución de biopsias endomiocárdicas innecesarias. Aunque la identificación de edema y realce precoz (hiperemia) son factores independientes de recuperación funcional cardíaca, no existen, todavía, datos acerca del papel de la DWI. En la experiencia de los autores, la DWI permite la identificación adecuada y reproducible del edema miocárdico persistente (figura 31).

#### 3.6.2. Monitorización terapéutica de masas cardíacas

Existe escasa bibliografía acerca de la monitorización del tratamiento neoadyuvante con DWI en lesiones malignas torácicas (figura 32) [2]. La DWI se ha mostrado útil en la identificación de respuesta terapéutica en cáncer de pulmón, de forma tan precoz como tras un mes de tratamiento quimioterápico estándar o tras una sesión de radiofrecuencia [5]. Los pacientes respondedores tenían mayor supervivencia global y libre de progresión. Además permite predecir aquellos tumores que van a responder mejor al tratamiento neoadyuvante [31–33]. Sin embargo, no existe ninguna mención en la literatura acerca de la monitorización terapéutica con DWI en pacientes con lesiones cardíacas malignas primarias o secundarias (figura 33).

#### Imágenes en esta sección:



Fig. 2: Figura 1



Fig. 3: Figura 2



Fig. 4: Figura 3

| maparite     | Tumores hipercelulares. Ráramente, líquido o asbcesos viscosos<br>productos de degradación de la bemoglobina |  |  |
|--------------|--------------------------------------------------------------------------------------------------------------|--|--|
|              | T2 shine – through necrosis licuefactiva                                                                     |  |  |
|              | Líquido, necrosis, baja celularidad y adenocarcinomas bien<br>diferenciados                                  |  |  |
|              | Tejido fibromuscular, grasa, artefactos de susceptibilidad<br>paramagnética (T2 dark through)                |  |  |
|              | Fibrosis madura con bajo contenido en agua                                                                   |  |  |
|              |                                                                                                              |  |  |
| N Profession |                                                                                                              |  |  |

Efecto T2 Dark-through en DWI en pociente con necrosis caseosa del anillo de la válvula mitral (flechas blancas)

Fig. 5: Figura 4





# Distorsión geométrica

#### Causa:

Inhomogeneidades BO en el campo magnético Solución:

- Aumentar el ancho de banda
- Adquisición en paralelo



# Artefactos de saturación grasa

#### Causa:

Diferente frecuencia de precesión entre la grasa y el agua en la dirección de codificación de fase.

#### Solución:

Técnicas de supresión selectiva de la grasa (SPIR, SPAIR).



COMPROMISO

PERSONAS INNOVACIÓN

# Artefactos de movimiento

#### Causa:

Pérdida de la intensidad de señal durante los altos valores b. Error de registro del vóxel inducido por movimiento.

#### Solución:

Triggering ECG; apnea o técnicas de navegación respiratoria

Fig. 6: Figura 5



Fig. 7: Figura 6



Paciente con cardiopatia isquémica irreversible (flecha blanca en A) y con daño miocárdico reversible (flecha azul en B).

Fig. 8: Figura 7



Varón de 68 años con miocardiopatia dilatada isquémica del ventriculo izquierdo y disfunción sistólica severa (FEVI: 24%). En el realce tardio eje (LGE) eje corto se identifica un infarto transmural (A; flechas blancas) en cara inferior e inferolateral. B. Secuencia T2 – STIR eje corto que evidencia una hiperintensidad de señal ligera alrededor de la escara isquémica en segmento inferoseptal pero de dificil valoración (flechas verdes). C. Secuencia de difusión (DWI) con bajo valor b dande, con mayor conspicuidad, se diferencia la hiperintensidad de señal del septo sugiriendo daño miocárdico reversible y, por tanto, miocardio viable (flecas azules). Por favor recuerden que parte de la señal apreciada con valores b bajos en DWI puede ser debida a efecto T2 en relación con la contribución de la perfusión a la señal de DWI.

Fig. 9: Figura 8



Varón de 38 años con infarto de miocardio previo en territorio de arteria caronaria descendente anterior con insuficiencia cardiaca severa (FEVI: 38%). Secuencias T2 – STIR (A; flechas azules) y DWI con bajo y alto valor b (B y C, respectivamente; flechas amarillas) mostrando la presencia de edema miocárdico, de mayor extensión mural que la escara fibrótica / necrótica apreciada en la secuencia de viabilidad (D; flechas rojas). Esto es consistente con un área de miocardio en riesgo. Por favor, noten el artefacto de distorsión geométrica (flechas blancas en B y C) en segmento inferolateral medioventricular del ventriculo izquierdo (flechas blancas).

Fig. 10: Figura 9

HealthTime

# 3.1 CARDIOPATÍA ISQUÉMICA Y DWI



Fig. 11: Figura 10

COMPROMISO PERSONAS

INNOVACIÓN

D71 tractografía ex vivo del corazón de un cerdo revelando la orientación de las fibras miocárdicas cardíacas.



Fig. 12: Figura 11



Varán de 26 años con dolor tarácico atípico autolimitado de 4 horas de evolución con elevación de enzimas cardíacas. En la fila de arriba (A, B y C) se muestran las secuencias T2 – STIR, realce precoz (EGE ) y LGE identificando la presencia de edema (flecha azul), hiperemia – aumento de la permeabilidad capilar (flecha verde) y fibrosis/necrosis miocárdica (flecha roja) en la pared lateral del VI. Es compatible con una miocarditis aguda a cuenta de los criterios de Lake Louis. D – F. Secuencia de DWI mostrando el edema miocárdico en la cara lateral, inferior y, a diferencia del T2-STIR, también en el septa interventricular.

Fig. 13: Figura 12



A-D. En el mismo pociente anterior noten la diferencia entre los valores ADC del miocardio inflamado (flechas azules) respecto a los del miocardio no inflamado. Vean la diferente conspicuídad del edema miocárdico en el septo en DWI (flechas amarillas) respecto al T2 – STIR. F – I. Durante la misma explaración se apreció una consolidación del lóbulo superior derecho con leve restricción en secuencias de DWI tarácicos (ADC: 1.37 × 10<sup>-3</sup> mm<sup>2</sup>/s) consistente con una brancaneumonía concomitante (flechas verdes).

Fig. 14: Figura 13



#### **3.2 MIOCARDITIS AGUDA**

A-D. Varón de 18 años con miopericarditis aguda. A. T2 – STIR eje corto mostrando areas de edema miocárdico en caras anterior y lateral del ventrículo izquierdo (flecha blanca). B. DWI con bajo valor b revelando el edema miocárdico pero con mayor extension que en T2 - STIR (flechas amarillas; afectación septal). C y D. LGE en ejes corto y largo horizontal apreciándose fibrosis / necrosis miocárdica de distribución no isquémica en cara lateral del ventriculo izquierdo, subepicárdico y afectando también al pericardio adyacente, en relación con miopericarditis aguda (flechas verdes).



Fig. 15: Figura 14

COMPROMISO

PERSONAS INNOVACIÓN



#### **3.2 MIOCARDITIS AGUDA**

A-D. Varón de 23 años con miocarditis aguda. A y B. Nótese la diferencia en la extensión de la hiperintensidad de señal miocárdica apreciada en DWI con valor b bajo (A) y alto (B). Esto puede ser debido, en parte, al efecto T2 presente en valor bajo, hecho que puede conducir a una sobreestimación del área edematosa. C y D. LGE orientados en ejes corto y largo horizontal mostrando un realce miocárdico de distribución no isquémica (subepicárdico) en segmento inferolateral medioventricular y apical del VI (flechas blancas).



Brancana et al. Scientific paster presentation. ECR2015.

# Fig. 16: Figura 15

COMPROMISO

PERSONAS INNOVACIÓN



Varón de 63 años con dolor torácico agudo y coronarias normales. A - C, T2 – STIR (flecha azul; A) y DWI con bajo y alto valor b (B y C, respectivamente; flecha amarilla) mostrando edema afectando a la pared libre del ventriculo derecho. D. Nótese la menor intensidad de señal de la pared libre del VD en el mapa de ADC (flecha amarilla) comparado con el VI. E – F. LGE orientadas en ejes largo horizontal y eje corto apreciánodose un realce de la pared libre del VD consistente con fibrosis (flechas rojas). Es compatible con una miacarditis aguda del VD acorde con los criterios de Loke Louis.

Fig. 17: Figura 16



Fig. 18: Figura 17



Varón de 53 años con dolor torácico, elevación de enzimas cardiacas (troponina > 500) y alteración de la contractilidad en cara lateral del VI en ecocardiografía. A-C. LGE mostrando un infarto transmural en cara lateral del VI con obstrucción microvascular (flechas blancas). Realce pericárdici coincidente (flechas verdes). D. Perfusión de primer paso mostrando el área infartada en cara lateral del VI (flechas azules). E – E. T2 – STIR y DWI en eje corto mostrando las áreas de edema, más conspicuas en DWI (felchas amarillas). Hiperintensidad del pericardio adyacente (flechas rojas) er relación con daño miocárdico isquémico reversible y pericarditis asociada (Sindrome de Dressler).

Fig. 19: Figura 18



COMPROMISO PERSONAS

INNOVACIÓN

#### 3.4 CONTUSIÓN CARDÍACA (BLUNT TRAUMA)



Varón de 23 años con dolor torácico agudo, fibrilación auricular paroxistica y fractura esternal secundaria a traumatismo torácico cerrado por coz de caballo. A - C. Comportamiento restrictivo del miocardio de la pared libre del VD en comparación con el miocardio del VI (flechas amarillas). D. Este hecho es mejor representado que en T2 - STIR (flecha amarilla). Nótese el hemaotma subcutáneo y endomedular en el cuerpo del esternón secundaria a fractura postraumática (flechas verdes).

Fig. 20: Figura 19



Fig. 21: Figura 20



Varán de 69 años can IM anteroseptal extenso y disfunción sistólica severa del VI (FE: 30%). B. Cine SSFP mostrando el adelgazamiento de la cara anterospetal y del dpex can un trombo intracavitario en su interior (flechos verdes: A). En LGE se identifica un realce transmural durante el LGE par ausencia de obstruccón microvascular (B y C). D – F. Dicha lesión no muestra restricción en DWI (flehcas amrillas). El reacle transmural, El trambo no muestra restricción en DWI (flechos azulares).

# Fig. 22: Figura 21



Varán de 80 años con fibrilación auricular y masa intraauricular. A y B. Masa endocavitaria hipointensa en T1, iso-hipointensa en T2, próxima a adyacente a la pared libre del VI (flechas amarillas). D. Artefacto de fluja radeanda la lesión en secuencias sangre negra. C. Dos cámaras confirmando la presencia de una lesión endocavitaria (flecha blanca). D – F DWI con comportamiento persistenteen bajo y alto valor b y también en el mapa de ADC (efecta T2 Dark through; molo). El artefacto de fluja se ha eliminado con valores b elevados. Esto es compatible con un trambo en la aurícula izquierda.

**Fig. 23:** Figura 22

Fig. 24: Video 1



Varón de 43 años con lesión isointensa en T2 BB axial (A) en seno cardiofrénico derecho. Atenuación de su intensidad de señal conforme aumenta la potenciación en difusión (B y C). El mapa de ADC (hiperintensidad) refleja la gran movilidad de las moléculas de agua en el seno de esta lesión indicando un origen quístico benigno (D). Es compatible con un quiste pericárdico.

**Fig. 25:** Figura 23



Mujer de 78 años con masa valvular mitral en estudio. Cine SSFP (A) y T2 - STIR (B) orientados en 4 cámaras muestran una masa hipointensa centrada en el anillo de la válvula mitral (flechas blancas). Ligero realce tardio e irregulard durante la viabilidad (C; flecha blanca). En DWI la masa persiste hipointensa mientras aumenta la potenciación en difusión (D – E; flechas amarillas). F. Mapa de ADC con masa persistentemente hipointensa, en relación con efecto T2 "Dark Through" (flecha verde). Es compatible con una necrosis caseasa del anillo valvular mitral.

Fig. 26: Figura 24

Fig. 27: Video 2



|                  | Myxoma                                                                                                                                                     | Fibroelastoma                                                                      | Fibroma<br>Intramural<br>Septo interventricular<br>Isointenso                                                                                                                                |  |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Site<br>location | Intracavitario<br>Septo interauricular                                                                                                                     | Intracavitario<br>Valvas                                                           |                                                                                                                                                                                              |  |
| T1WI             | isointenso                                                                                                                                                 | Isointenso                                                                         |                                                                                                                                                                                              |  |
| T2WI             | ∱<br>heterogéneo                                                                                                                                           | ¢                                                                                  | +                                                                                                                                                                                            |  |
| LGE              | Heterogéneo                                                                                                                                                | ninguna                                                                            | AT C                                                                                                                                                                                         |  |
| Pathology        | <ul> <li>Células sueltas + estroma<br/>polisacárido</li> <li>Heterogéneo: quistes, necrosis,<br/>calcificación hemorragia o trombo<br/>tumoral.</li> </ul> | <ul> <li>Tejico conectivo intravascular,<br/>asociada a conectivopatia.</li> </ul> | <ul> <li>Fibroblastos neoplásicos con<br/>colágeno.</li> <li>No cambios quísticos, hemorragia n<br/>Cambios quísticos, hemorragia y<br/>necrosis.</li> <li>Calcificación central.</li> </ul> |  |

Fig. 28: Figura 25



| Rhabdomyoma                                                                                                                                                   | Hemangioma                                                                                                                                                                                                                                     | Lipoma<br>Variable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| intramural<br>Ventriculo izquierdo                                                                                                                            | Variable                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Isointenso                                                                                                                                                    | ↑ heterogéneo                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| lsointenso<br>Levemente ↑                                                                                                                                     | ↑ heterogéneo                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Ninguno<br>Minimo                                                                                                                                             | <b>↑</b> ↑                                                                                                                                                                                                                                     | Ninguno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| <ul> <li>"Spider cells": rhabomiocitos<br/>degenerados con vacuolas con<br/>glicógeno, septos eosinofílicos y<br/>núcleos de localización central.</li> </ul> | <ul> <li>Alineamiento endotelial con paredes<br/>finas mezclada con septos y<br/>calcificación.</li> <li>Capilar, cavernosa o arteriovenosa.</li> </ul>                                                                                        | <ul> <li>Colección de adipocitos encapsulad<br/>y homogénea.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                               | Rhabdomyoma<br>Intramural<br>Ventriculo izquierdo<br>Isointenso<br>Levemente ↑<br>Ninguno<br>Minimo<br>• "Splder cells":rhabomiocitos<br>degenerados con vacuolar con<br>glicógeno, septos ecsinofilicos y<br>núcleos de localización central. | Rhabdomyoma     Hemangioma       Intramural<br>Ventriculo izquierdo     Variable       Isointenso     ↑ heterogéneo       Isointenso     ↑ heterogéneo       Isointenso     ↑ heterogéneo       Isointenso     ↑ heterogéneo       Ninguno<br>Minimo     ↑ ↑       * "Spider cells": rhabomiocitos<br>degenerados con vacuolas con<br>glicógeno, septos ecosinofilicos y<br>núcleos delocalización central.     • Alineamiento endotelial con paredes<br>finas mazclada con septos y<br>calcificación. |  |

Fig. 29: Figura 26



Varón de 37 años con estenosis mitral severa secundaria a masa intracavitaria en aurícula izquierda. A – C. Masa uricular izqueirda anclada a la porción más cuadal del septo interauricular, adyacente a la comisura mitroaórtica y , predominantemente isointenso heterogéneo en T1, T2 y T2 – STIR (flechas blancas). D. Cine SSFP mostrando un prolapso de la masa a través del plano valvular e estenosis. E. LGE con realce heterogéneo de la lesión (9%). E. LGE muestra realce heterogeneo de la lesión (flechas azules). F – F DWI muestra el comportamiento restrictivo de la lesión (relevo en verde). Es compatible con un mixoma auricular con estenosis mitral.

Fig. 30: Figura 27

Fig. 31: Video 3



PERSONAS

INNOVACIÓN

# 3.5 MASAS CADÍACAS

|                              | Localización                                              | 71                      | T2                      | LGE                     | Características                                                                                                                           |
|------------------------------|-----------------------------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Metástasis                   | Variable                                                  | ↓/↑<br>(melanoma)       | Ť                       | Heterogéneo             | Depende del origen primario.                                                                                                              |
| Angiosarcoma                 | Auricula derecha                                          | Heterogéneo             | Heterogéneo             | Heterogéneo             | Células anaplásicas derivadas de vasos<br>sanguineos.<br>Grandes regiones de hemorragia y necrosis<br>intratumoral. Rápida prolíferación. |
| Rhabdomiosarcoma             | Variable                                                  | isointenso              | 1                       | Homogéneo               | Afectación valvular.                                                                                                                      |
| Sarcoma<br>Indiferenciado    | Aurícula<br>Izquierda                                     | Isointenso              | ţ.                      | Heterogéneo<br>Variable | Generalmente intracavitario o infiltrante.<br>No hay características histológicas específicas                                             |
| Otros tipos                  | Variable                                                  | Isointenso              | †.                      | Heterogéneo<br>Variable | Fibrosarcomas, osteosarcomas,<br>Leiomiosarcomas and liposarcomas                                                                         |
| Linfoma cardíaco<br>primario | Auricula derecha<br>Variable<br>afectación<br>pericárdica | isointenso<br>Homogéneo | isointenso<br>Romogéneo | Mínima captación        | Ausencia de leisones de necrosiscentraly/o<br>hemorragia.<br>Linformas de células B. Agresivos.                                           |

Fig. 32: Figura 28



Mujer de 74 años con carcinoma de células renales, trombosis de vena cava inferior y metástasis pulmonares. A y B. LGE y T2 – STIR identificando una lesión intramural en ventrículo derecho afectando a la cara anterior, septal y lateral, hiperintensa en T2 – STIR y con realce heterogéneo (flechas blancas). C y D. La lesión del VD es restrictiva en DWI sugiriendo un origen metastásico (flechas azules). Nótese la presencia de restricción añadida en nódulos pulmonares compatible s con metástasis (flechas verdes).

Fig. 33: Figura 29



Varón de 60 años con carcinoma escamoso de cabeza y cuello, síncope y ondas T negativas en cara anterior. A. Durante la exploración se identifica una lesión hipermetabólica en el septo apical y ápex del ventr ciulo derecho. B – D. Muestra restricción en secuencias de difusión (hiperintensa en gradiente b alto e hipointensa en mapa de ADC; ADC: 0.73 x 10<sup>-3</sup> mm²/s; B, C and D; flechas amarillas). E – F. Leve hiperintensidad en T2 – STIR (flecha azul) y realce heterogéneo en LGE (flecha roja). Es compatible con metástasis cardíaca.

Fig. 34: Figura 30



Varón de 20 años diagnosticado de miocarditis aguda acorde con los criterios de Lake Louis en la evaluación inical con edema en alto valor b de DWI y mapas de ADC y realce tardío subepicárdico focal en segmento inferolateral del VI (flecha roja). Tras el seguimiento, 6 meses despues, se identifica persistencia del edema miocárdico además del realce tardío de distribución no isquémica en LGE eje corto.

Fig. 35: Figura 31



Mujer de 67 años previamente tratada quirúrgicamente de un mixoma auriclar. A. b – SSFP eje corto mostrando una masa heterogénea anclada al septo interauricular. B y C. En DWI muestra un comportamiento restrictivo (flechas amarillas). D. Es isointenso en T1 (flechas azules). E y F. En LGE se aprecia un realce heterogéneo (flechas rojas). Es compatible con una recidiva local de mixoma auricular.

**Fig. 36:** Figura 32



Paciente varán de 60 años con metástasis cardíaca de un carcinoma escamoso de cabeza y cuello, hipermetabólica (A), restrictiva en difusión (ADC: 0.73 × 10<sup>-9</sup> mm<sup>2</sup>/s; B, C and D; flechas amarillas), con realce tardía heteragéneo (E; flecha rajo) e hiperintensa en T2 – STIR (F; flecha azul). Tras 7 meses de tratamiento se aprecia una reducción significativa en tamaño (G – J; flechas verdes) así como un incremento del ADC (ADC: 1.35 × 10<sup>-9</sup> mm<sup>2</sup>/s), sugiriendo cambios secundarias a quimiaterapla. Edematización del pericardio can engrasamiento irregular y fibrosis, así como restricción en DWI (I – J; flechas blancas) en relación con metástasis pericárdicas, de nueva aparición.

#### **Fig. 37:** Figura 33

# Conclusiones

#### 4. Conclusiones

1. La DWI es una técnica aplicable en el corazón aunque técnicamente difícil.

2. Puede detectar edema miocárdico tanto en miocardiopatías inflamatorias como isquémicas con mayor eficacia que el T2 – STIR y de forma más reproducible.

3. La DWI cardíaca también permite la caracterización de masas, a pesar de que existe una experiencia limitada.

4. A pesar de que no hay datos disponibles, la DWI cardíaca puede ser de gran importancia no solo en la identificación del edema miocárdico persistente en miocarditis, sino también en masas cardíacas.

# **Bibliografía / Referencias**

#### BIBLIOGRAFÍA

1. Le Bihan D (2013) Apparent diffusion coefficient and beyond: what diffusion MR imaging can tell us about tissue structure. Radiology 268:318–22.

2. Luna A, Sánchez-Gonzalez J, Caro P (2011) Diffusion-weighted imaging of the chest. Magn Reson Imaging Clin N Am 19:69–94.

 Choi JS, Kim M-J, Chung YE, et al. (2013) Comparison of breathhold, navigator-triggered, and free-breathing diffusion-weighted MRI for focal hepatic lesions. J Magn Reson Imaging 38:109–18.
 Laissy J-P, Gaxotte V, Ironde-Laissy E, et al. (2013) Cardiac diffusion-weighted MR imaging in recent, subacute, and chronic myocardial infarction: a pilot study. J Magn Reson Imaging 38:1377–87.
 Broncano J, Luna A, Sánchez-González J, et al. (2016) Functional MR Imaging in Chest Malignancies. Magn Reson Imaging Clin N Am 24:135–55.

6. Padhani AR, Liu G, Koh DM, et al. (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11:102–25.

7. Le Bihan D, Breton E, Lallemand D, et al. (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–7.

8. Le Bihan D, Breton E, Lallemand D, et al. (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505.

9. Eitel I, Friedrich MG (2011) T2-weighted cardiovascular magnetic resonance in acute cardiac disease. J Cardiovasc Magn Reson 13:13.

10. Kociemba A, Pyda M, Katulska K, et al. (2013) Comparison of diffusion-weighted with T2-weighted imaging for detection of edema in acute myocardial infarction. J Cardiovasc Magn Reson 15:90.

11. Lloyd-Jones D, Adams RJ, Brown TM, et al. (2010) Executive summary: heart disease and stroke statistics--2010 update: a report from the American Heart Association. Circulation 121:948–54.

12. Alpert JS, Thygesen K, Antman E, Bassand JP (2000) Myocardial infarction redefined--a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol 36:959–69.

13. Thygesen K, Alpert JS, Jaffe AS, et al. (2012) Third universal definition of myocardial infarction. Circulation 126:2020–35.

14. Renker M, Baumann S, Rier J, et al. (2015) Imaging coronary artery disease and the myocardial ischemic cascade: clinical principles and scope. Radiol Clin North Am 53:261–9.

15. Rajiah P, Desai MY, Kwon D, Flamm SD (2013) MR Imaging of Myocardial Infarction. RadioGraphics 33:1383–1412.

16. Friedrich MG (2010) Myocardial edema--a new clinical entity? Nat Rev Cardiol 7:292-6.

17. von Knobelsdorff-Brenkenhoff F, Schulz-Menger J (2012) Cardiovascular magnetic resonance imaging in ischemic heart disease. J Magn Reson Imaging 36:20–38.

18. Laissy JP, Serfaty JM, Messika-Zeitoun D, et al. (2009) [Cardiac diffusion MRI of recent and chronic myocardial infarction: preliminary results]. J Radiol 90:481–4.

19. Friedrich MG, Sechtem U, Schulz-Menger J, et al. (2009) Cardiovascular magnetic resonance in myocarditis: A JACC White Paper. J Am Coll Cardiol 53:1475–87.

20. Cooper LT (2009) Myocarditis. N Engl J Med 360:1526-38.

21. Liu PP, Mason JW (2001) Advances in the Understanding of Myocarditis. Circulation 104:1076–1082.

22. Potet J, Rahmouni A, Mayer J, et al. (2013) Detection of myocardial edema with low-b-value diffusion-weighted echo-planar imaging sequence in patients with acute myocarditis. Radiology 269:362–9.

23. Rapacchi S, Wen H, Viallon M, et al. (2011) Low b-value diffusion-weighted cardiac magnetic resonance imaging: initial results in humans using an optimal time-window imaging approach. Invest Radiol 46:751–8.

24. Bogaert J, Francone M (2013) Pericardial disease: value of CT and MR imaging. Radiology 267:340–56.

25. Cosyns B, Plein S, Nihoyanopoulos P, et al. (2015) European Association of Cardiovascular Imaging (EACVI) position paper: Multimodality imaging in pericardial disease. Eur Heart J Cardiovasc Imaging

16:12-31.

26. Bock JS, Benitez RM (2012) Blunt cardiac injury. Cardiol Clin 30:545-55. doi:

10.1016/j.ccl.2012.07.001

27. Restrepo CS, Vargas D, Ocazionez D, et al. (2013) Primary pericardial tumors. Radiographics 33:1613–30.

28. Motwani M, Kidambi A, Herzog BA, et al. (2013) MR imaging of cardiac tumors and masses: a review of methods and clinical applications. Radiology 268:26–43.

29. Yared K, Baggish AL, Picard MH, et al. (2010) Multimodality imaging of pericardial diseases. JACC Cardiovasc Imaging 3:650–60.

30. Gutberlet M, Spors B, Thoma T, et al. (2008) Suspected chronic myocarditis at cardiac MR: diagnostic accuracy and association with immunohistologically detected inflammation and viral persistence. Radiology 246:401–9.

31. Ohno Y, Koyama H, Yoshikawa T, et al. (2012) Diffusion-weighted MRI versus 18F-FDG PET/CT: performance as predictors of tumor treatment response and patient survival in patients with non-small cell lung cancer receiving chemoradiotherapy. AJR Am J Roentgenol 198:75–82.

32. Ohno Y, Sugimura K, Hatabu H (2002) MR imaging of lung cancer. Eur J Radiol 44:172–81.
33. Okuma T, Matsuoka T, Yamamoto a, et al. (2009) Assessment of early treatment response after CT-guided radiofrequency ablation of unresectable lung tumours by diffusion-weighted MRI: a pilot study. Br J Radiol 82:989–94.